
Workshop: Momentum of a quantum particle and 
the Heisenberg uncertainty principle
Quantum aspects of physical chemistry

http://quantum.bu.edu/courses/PLTL/3/3.pdf
Last updated Tuesday, November 15, 2005 13:08:42-05:00

Copyright © 2005 Dan Dill (dan@bu.edu)
Department of Chemistry, Boston University, Boston MA 02215

In the previous workshop we explored the quantum concept that once we represent a particle by a 
wavefunction, we can no longer meaningfully represent the particle as "being" at a particular point in 
space. Rather, we can only work with the average properties of the particle, by taking into account 
how the probability density, yHxL2, changes throughout space. 

In this workshop we will see how to extend these ideas to particle properties that are represented as 
operators, and then explore the consequences of the position-momentum commutation relation,
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on the simultaneous values of uncertainties of different particle properties. The most famous of these 
is the position-momentum uncertainty product, dx d p.

à Review

In the last workshop we introduced several key quantum ideas. Let's begin with a review.

1. What is the difference between wavefunction, probability density, and probability? Be 
precise in contrasting these terms.

2. What is the quantum concept definition of the average value (the so-called expectation 
value) of position?

à Weighted averages

Next, let's explore the concept of weighted average. The key idea of computing the average value of 
position is that the average is defined in terms of the relative likelihood of the particle being at each 
position. The relative likelihood of a particle being within „ x of position x is wHxL = y2HxL „ x and so, 
for example, the average position—the average value of x—is the weighted average

Xx\ = ‚
all x

x wHxL = ‡
-¶

¶

x y2HxL „ x.

The terminology "weighted average" means that each position contributes to the sum according to its 
relative weight, wHxL.



3. What are the units of the relative weights, wHxL?

4. What is the numerical value of the sum of the relative weights, wHxL?

5. Assume that the following is the list of scores, out of a possible maximum of 50 points, 
earned on an exam. Calculate the exam average.

845, 35, 41, 32, 32, 36, 38, 50, 48, 45, 32, 42, 36, 38, 34, 34, 37, 33,
46, 40, 43, 37, 37, 42, 39, 41, 42, 43, 47, 37, 42, 49, 38, 37, 42, 37<

6. Make a table of scores, si, and their corresponding relative weights, wi. Make sure that 
your weights add up to 1.

7. Write down an expression for the exam average in terms of the scores, si, and their 
corresponding relative weights, wi. 

8. Use your expression to calculate the exam average. Is your answer the same as the 
average you computed in question 5? Should it be?
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à Complex-valued wavefunctions

In general wavefunctions can have imaginary components. In this workshop we'll use the same 
wavefunction as in the previous workshop except that now the wavefunction will contain the factor 
Â =

è!!!!!!!
-1 . That is, we'll work in one dimension and assume that the wavefunction of a particle 

confined between x = 0.0 Þ and x = L = 1.0 Þ is

y2 aHxL = Â 
è!!!!!!!!!2 ê L  sinH2 p x ê LL.

To ensure that quantities calculated from wavefunctions are real numbers, probabilities are computed 
using a product of wavefunction, y, and its complex conjugate, y*, where the * on the wavefunction 
denotes complex conjugation, that is, to replace everywhere Â by -Â. 

9. This means that in general we write probability densities as » yHxL »2 = yHxL* yHxL rather 
than simply as yHxL2. Show that the latter rule does not make sense physically but that the 
former rule does.

10. In the last workshop you determined that the expectation (average) value of position, 
Xx\ = Ÿ0

1 Þx y2HxL2 „ x,  was 0.5 Þ. Show that this definition of expectation value used with 
y2 aHxL leads to an unphysical answer.

11. How can we enhance the definition of expectation value of position to make it sensible 
when used with wavefunctions that contain imaginary factors?

12. Show that your enhanced definition give the same answer for Xx\ for the two 
wavefunctions, y2HxL and y2 aHxL. 

13. Consider the following statement: In quantum calculations, the overall phase of a 
wavefunction has no effect on physical quantities calculated with the wavefunction. 
Assess the correctness of this statement, based on your answers to the previous several 
questions.
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à Average values of momentum

Now, let's investigate how to compute the average value of momentum. We have learned that, in 
quantum mechanics, momentum is represented as the operator p = -Â Ñ „ ê „ x. Since the momentum 
is expressed in terms of an operator rather than a numerical quantity, we cannot compute the average 
momentum, Xp\, of a particle in the same way that we used to compute its average position, Xx\. 

Here is how we extend the recipe for average values to handle cases were the physical quantity is 
represented as an operator. The first step is to determine the effect of the operator on the 
wavefunction. For the case of momentum, this means we need to evaluate the expression

gHxL ª p yHxL = -Â Ñ 
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

 yHxL.

It is very helpful to interpret this expression as follows: The effect of the momentum operator on a 
wavefunction is a new function, gHxL, that is, something that has a numerical value at each value of x. 
That is, in this first step we have gone for operator to numbers.

The second step is to evaluate the product

yHxL* gHxL = yHxL* p yHxL ª -Â ÑyHxL* 
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

 yHxL

at each value of x. 

14. Show that, for any wavefunction, yHxL, the units of yHxL* p yHxL are momentum per unit 
length. 

15. In three dimensions the expression in the previous question is replace by 
yHx, y, zL* px yHx, y, zL, where now we use px to indicated the operator for the x 
component of the momentum. What would the units of the expression 
yHx, y, zL* px yHx, y, zL ? Does it make sense to interpret this expression as a momentum 
density, rpxHx, y, zL? (r is the Greek letter rho.) 

16. Is this interpretation analogous to interpreting yHx, y, zL* yHx, y, zL as a probability 
density? Can we interpret yHxL* p yHxL as a one-dimensional momentum density, rpHxL?

A way to estimate the average momentum of the particle, Xp\, is to evaluate the contribution to the 
momentum for adjacent regions of space and then to sum up these contributions. 

17. With respect to the values of the wavefunction y2 aHxL at the 21 evenly spaced points 
between 0 and 1 Þ , given below, write an equation in terms of the momentum density, 
rpHxL, that corresponds to this definition of average momentum.

In calculus we learn that the derivative of a function, f HxL, at a point is the slope of the function at 
that point,

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

= lim
DxØ0

f Hx + DxL - f HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx + DxL - x

.

An approximation to the derivative is to not take the limit, Dx Ø 0.
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18. Use this idea to show that your scheme to evaluate the average momentum is 
equivalent to

Xp\ > -Â Ñ‚
i=1

20

yHxiL* HyHxi+1L - yHxiLL.

19. Use this scheme to evaluate this approximation to the average momentum. Her are the 
wavefunction values.

x HfiL ψ2 a Hfi−1ê2L
0 0
0.05 0.437 Ç
0.1 0.831 Ç
0.15 1.14 Ç
0.2 1.34 Ç
0.25 1.41 Ç
0.3 1.34 Ç
0.35 1.14 Ç
0.4 0.831 Ç
0.45 0.437 Ç
0.5 0
0.55 −0.437 Ç
0.6 −0.831 Ç
0.65 −1.14 Ç
0.7 −1.34 Ç
0.75 −1.41 Ç
0.8 −1.34 Ç
0.85 −1.14 Ç
0.9 −0.831 Ç
0.95 −0.437 Ç
1. 0

20. Do your value and units for the average momentum make sense? Could you have 
anticipated your value, without doing any calculations? Hint: Analyze your computation 
pictorially.

21. How could you improve your value for the average momentum? 

22. Write the mathematical equation that corresponds to exact value of the average 
momentum.

23. Write the mathematical equation that corresponds to exact value of the average of any 
quantity represented by an operator. Does you expression also work for cases where the 
quantity is not an operator (such as average values of position)?
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à Average values of squared momentum

24. With respect to the values of the wavefunction y2 aHxL at the 21 evenly spaced points 
between 0 and 1 Þ used in the previous workshop, show that an approximate scheme to 
evaluate the squared momentum density is

Xp2\ > -Ñ2 ‚
i=2

20

 yHxiL* 
yHxi+1L - 2 yHxiL + yi-1HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Dx
,

where Dx is the constant spacing between adjacent positions. 

25. Use the scheme to evaluate this approximation to the average squared momentum. 

26. Do your value and units for the average squared momentum make sense? Could you 
have anticipated your value, without doing any calculations?

27. How could you improve your value for the average squared momentum? 

28 Write the mathematical equation that corresponds to exact value of the average squared 
momentum.
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à Testing the Heisenberg uncertainty principle

29. Use your results for Xp\ and Xp2\ for a particle described by the wavefunction y2 to 
compute the momentum uncertainty, d p.

30. The values of Xx\ and Xx2\ for a particle described by the wavefunction y2 aHxL are 0.50 
Þ and 0.32 Þ2. Do you see why these are the same values you get for the wavefunction 
y2HxL?

31 Use your results to evaluate the uncertainty product,  dx d p. Are the units of your 
answer correct? 

32. The Heisenberg uncertainty principle applied to position and momentum states that, 
dx d p ¥ Ñ ê2. Is the Heisenberg uncertainty principle satisfied in this case? Should it be?
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