

Slides on the Nernst equation, CH102 Spring 2016, A1 an	nd A2 lecture 25	Copyright © 2016 Dan Dill dan@b	u.edu
]	The Nernst equation		
BOSTON			0
UNIVERSITY			

Slides on the Nernst equation, CH102 Spring 2016, A1 and A2 lecture 25

Slides on the Nernst equation, CH102 Spring 2016, A1 and A2 lecture 25

Slides on the Nernst	equation, CH102 Spring 2016, A1 and A2 lecture 25	Copyright © 2016 Dan Dill dan@bu.e	du					
TP The value of E when $Q = 1$ at 25 °C is								
E	$E(Q = 1) = E^{0} = \pm (0.06/n) V \log(K)$							
For $n_{\rm c} = 1$.	if <i>K</i> is different by a factor of ten (say.	17 instead of 1.7).						
the magni	tude of standard voltage will change by	,						
une magin	the of standard fortage will change sy							
20% 1.	10 V							
20% 2	1 V							
20% 2.	1 V							
20% 3.	0.1 V							
20% 4.	0.06 V							
20% 5.	Some other amount							
_0.0								
BOSTON	Response							
UNIVERSITY	Counter	10	,					

Slides on the Nernst e	equation, CH102 Spring 2016, A1 and A2 lecture 25	Copyright © 2016 Dan Dill dan@bu.edu				
[TP] The value of E when $Q = 1$ at 25 °C is						
$E(Q = 1) = E^0 = +(0.06/n_0) V \log(K)$						
For $n_{\rm e} = 3$,	if <i>K</i> is different by a factor of ten (say,	17 instead of 1.7),				
the magnit	ude of standard voltage will change by					
Ŭ	0 0 0					
25% 1.	0.18 V					
25% 2 .	0.06 V					
25% 3.	0.02 V					
25% 4	Some other amount					
-3/0 -						
BOSTON	Response	10				
	Counter					
BOSTON	Response Counter	10 11				

Slides on the Nernst	equation, CH102 Spring 2016, A1 and A2 lecture 25	Copyright © 2016 Dan Dill dan@b	u.edu			
[TP] The value of <i>E</i> when $Q = 1$ at 25 °C is						
$E(Q = 1) = E^0 = +(0.06/n_0) \operatorname{V} \log(K)$						
A typical p	hysiological value of E° is 0.18 V.					
For $n_{\rm e} = 1$	this corresponds to the value of K equal to					
17% 1.	0.1					
17% 2.	1					
17% 3.	10					
17% 4.	100					
17% 5.	1000					
17% 6.	Some other value					
BOSTON	Response	10	2			
	Counter					

Slides on the Nernst equation, CH102 Spring 2016, A1 and A2 lecture 25

Slides on the Nerrest equation, CH102 Spring 2016. A1 and A2 lecture 25 Copyright © 2016 Dan Dill dan@bu.edu $[TP] \text{ At 25 °C}$ $E = E^{0} - (0.06/n_{e}) \log(Q)$ What is the value of <i>E</i> when there are no products present?	Sildes on the Nernst equation, CH102 Spring 2016, A1 and A2 lecture 25 Copyright © 2016 Dan Dill dan@bu.edu [TP] At 25 °C $E = E^0 - (0.06/n_e) \log(Q)$ What is the value of <i>E</i> when there are only products present?
25% 1. $E = \infty$ 25% 2. $E = 0$ 25% 3. $E = E^{0}$ 25% 4. None of the above	25% 1. $E = \infty$ 25% 2. $E = 0$ 25% 3. $E = E^{0}$ 25% 4. None of the above
BOSTON UNIVERSITY Counter 10	BOSTON UNIVERSITY Response Counter 10 20

Slides on the Nerrst equation, CH102 Spring 2016, A1 and A2 lecture 25 $[TP] For A + B \rightleftharpoons 2 C + D \text{ at } 25 \text{ °C}$ $E^{b} = (0.06/n_{e}) \log(K)$ What is the value of the equilibrium constant for 2 A + 2 B \leq 4 C + 2 D?	Copyright © 2016 Dan Dill dan@bu.edu	Sides on the Nernst equation, CH102 Spring 2016, A1 and A2 lecture 25 [TP] For A + B \Leftrightarrow 2 C + D at 25 °C $E^{0} = (0.06/n_{e}) \log(K)$ What is the value of n_{e} for 2 A + 2 B \Leftrightarrow 4 C + 2 D?	Copyright © 2016 Dan Dill dan@bu.edu
17% 1. K 17% 2. 2 K 17% 3. K^2 17% 4. $K/2$ 17% 5. K^{4_2} 17% 6. None of the above		17% 1. n_e 17% 2. $2 n_e$ 17% 3. n_e^2 17% 4. $n_e/2$ 17% 5. $n_e^{1/2}$ 17% 6. None of the above	
BOSTON CNUVASIANT Response Counter	10 21	BOSTON UNIVERSITY Counter	10 22

Slides on the Nerrost equation, CH102 Spring 2016, A1 and A2 lecture 25 $[TP] For A + B \rightleftharpoons 2 C + D \text{ at } 25 \text{ °C}$ $E^{0} = (0.06/n_{e}) \log(K)$ What is the value of E^{0} for $2 A + 2 B \rightleftharpoons 4 C + 2 D?$	Copyright © 2016 Dan Dill dan@bu.edu	Sides on the Nerrat equation, CH102 Spring 2016. At and A2 lecture 25 Copyright © 2016 Dan Dill dan@bu.edu $[\mathbf{TP}] \text{ For } \mathbf{A} + \mathbf{B} \Leftrightarrow 2 \mathbf{C} + \mathbf{D} \text{ at } 25 \text{ °C}$ $E^{\mathrm{b}} = (0.06/n_{\mathrm{e}}) \log(K)$ What is the value of E^{b} when all concentrations are doubled?
17% 1. E^{5} 17% 2. $2 E^{5}$ 17% 3. E^{52} 17% 4. $E^{9}/2$ 17% 5. $E^{51/2}$ 17% 6. None of the above		17% 1. E^0 17% 2. $2 E^0$ 17% 3. E^{02} 17% 4. $E^0/2$ 17% 5. $E^{01/2}$ 17% 6. None of the above
BOSTON UNIVERSITY Response Counter	10 23	BOSTON UNIVERSITY Counter 10 24

Sildes on the Nernst equation, CH102 Spring 2016, A1 and A2 lecture 25 Copyright © 2016 Dan Dill dan@bu.edu [TP] A concentration cell is constructed with <i>Q</i> corresponding to the Cl ⁻ concentration difference between sea water and river water at 25 °C. Assume that the Cl ⁻ concentration (due to dissolved NaCl) of sea water is 35 g/L and than that of river water is 1.0 mg/L. The voltage of this cell is						
20%1.20%2.20%3.20%4.	E = +0.13 V E = +0.27 V E = +0.54 V E = +1.08 V					
20% 5.	Something else					
BOSTON	Response Counter		10	31		