

$$
E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)
$$

Calculate the voltage at $25^{\circ} \mathrm{C}$ for $\mathrm{n}_{\mathrm{e}}=1$ when $\mathrm{Q}=(1 / 100) \mathrm{K}$ $\mathrm{E}=0.12 \mathrm{~V}$
$E=-\left(0.06 / n_{\mathrm{e}}\right) V \log (Q / K)$
Calculate the voltage at $25^{\circ} \mathrm{C}$ for $\mathrm{n}_{\mathrm{e}}=1$ when $\mathrm{Q}=(1 / 10) \mathrm{K}$ $\mathrm{E}=0.06 \mathrm{~V}$

Copyight 2016 Dan Dill dan@bu.edu

E

$$
E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)
$$

Calculate the voltage at $25^{\circ} \mathrm{C}$ for $\mathrm{n}_{\mathrm{e}}=1$ when $\mathrm{Q}=(10) \mathrm{K}$ $\mathrm{E}=-0.06 \mathrm{~V}$

$$
E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)
$$

At $25^{\circ} \mathrm{C}$ for $\mathrm{n}_{\mathrm{e}}=1, \ldots$
each order of magnitude change in Q / K... changes voltage by 0.06 V .

$$
E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)
$$

Write an expression for E when $Q=1$.

$$
E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)
$$

The value of E when $\mathrm{Q}=1$ is called the standard voltage and at $25^{\circ} \mathrm{C}$ is written as

$$
\mathrm{E}(\mathrm{Q}=1)=\mathrm{E}^{\mathrm{o}}=+\left(0.06 / \mathrm{n}_{\mathrm{e}}\right) \mathrm{V} \log (\mathrm{~K})
$$

[IP] The value of E when $\mathrm{Q}=1$ at $25^{\circ} \mathrm{C}$ is $\mathrm{E}(\mathrm{Q}=1)=\mathrm{E}^{0}=+\left(0.06 / \mathrm{n}_{\mathrm{e}}\right) \mathrm{V} \log (\mathrm{K})$
For $n_{e}=1$, if K is different by a factor of ten (say, 17 instead of 1.7), the magnitude of standard voltage will change by ...
$\begin{array}{lll}20 \% & 1 . & 10 \mathrm{~V} \\ 20 \% & 2 . & 1 \mathrm{~V} \\ 20 \% & 3 . & 0.1 \mathrm{~V}\end{array}$
20\% 4. 0.06 V
20\% 5. Some other amount
[TP] The value of E when $\mathrm{Q}=1$ at $25^{\circ} \mathrm{C}$ is $\mathrm{E}(\mathrm{Q}=1)=\mathrm{E}^{0}=+\left(\mathrm{o} .06 / \mathrm{n}_{\mathrm{e}}\right) \mathrm{V} \log (\mathrm{K})$
For $\mathrm{n}_{\mathrm{e}}=3$, if K is different by a factor of ten (say, 17 instead of 1.7), the magnitude of standard voltage will change by ...

25\% 1. 0.18 V
25% 2. 0.06 V
25\% 3. 0.02 V
25% 4. Some other amount
Copyight @ 2016 Dan Dill dan@uu.edu
ITP] The value of E when $\mathrm{Q}=1$ at $25^{\circ} \mathrm{C}$ is $\mathrm{E}(\mathrm{Q}=1)=\mathrm{E}^{0}=+\left(\mathrm{o} .06 / \mathrm{n}_{\mathrm{e}}\right) \mathrm{V} \log (\mathrm{K})$
A typical physiological value of E^{0} is 0.18 V .
For $n_{e}=1$ this corresponds to the value of K equal to ...

$E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)$
The value of E when $\mathrm{Q}=1$ at $25^{\circ} \mathrm{C}$ is

$$
E(Q=1)=E^{0}=+\left(0.06 / n_{e}\right) V \log (K)
$$

Calculate K corresponding to $\mathrm{E}^{0}=1.8 \mathrm{~V}$ for $\mathrm{n}_{\mathrm{e}}=1$.
$K=10^{30}$. Very large!
Copyright © 2016 Dan Dill dan@uu.edu

$$
E=-\left(0.06 / n_{\mathrm{e}}\right) \vee \log (Q / K)
$$

The value of E when $Q=1$ at $25^{\circ} \mathrm{C}$ is

$$
\mathrm{E}(\mathrm{Q}=1)=\mathrm{E}^{\mathrm{o}}=+\left(\mathrm{o} .06 / \mathrm{n}_{\mathrm{e}}\right) \mathrm{V} \log (\mathrm{~K})
$$

Express the cell voltage for any value of Q in terms of E^{o}, that is, in term of the cell voltage when $\mathrm{Q}=1$.

$E=-\left(0.06 / n_{e}\right) V \log (Q / K)$

The value of E when $\mathrm{Q}=1$ at $25^{\circ} \mathrm{C}$ is

$$
\mathrm{E}(\mathrm{Q}=1)=\mathrm{E}^{\mathrm{o}}=+\left(\mathrm{o} .06 / \mathrm{n}_{\mathrm{e}}\right) \mathrm{V} \log (\mathrm{~K})
$$

The cell voltage at $25^{\circ} \mathrm{C}$ for any value of Q in terms of the cell voltage when $\mathrm{Q}=1$ is
$E($ any $Q)=E^{o}-\left(0.06 / n_{e}\right) V \log (Q)$
This is called the Nernst equation

[TP] At $25^{\circ} \mathrm{C}$

$\mathrm{E}=\mathrm{E}^{\mathrm{o}}-\left(0.06 / \mathrm{n}_{\mathrm{e}}\right) \log (\mathrm{Q})$
What is the value of E when everything is in standard states?
25% 1. $\mathrm{E}=\infty$
25\% 2. $\mathrm{E}=\mathrm{o}$
25% 3. $\mathrm{E}=\mathrm{E}^{0}$
25% 4. None of the above

[TP] At $25^{\circ} \mathrm{C}$
$\mathrm{E}=\mathrm{E}^{0}-\left(0.06 / \mathrm{n}_{\mathrm{e}}\right) \log (\mathrm{Q})$
What is the value of E when there are only products present?
25% 1. $\mathrm{E}=\infty$
25% 2. $\mathrm{E}=\mathrm{o}$
$25 \% 3$. $\mathrm{E}=\mathrm{E}^{\mathrm{o}}$
25% 4. None of the above
25% 3. $\mathrm{E}=\mathrm{E}^{0}$
25% 4. None of the above

Copyight © 2016 Dan Dill dan@buedu
[TP] At $25^{\circ} \mathrm{C}$
$\mathrm{E}=\mathrm{E}^{0}-\left(0.06 / \mathrm{n}_{\mathrm{e}}\right) \log (\mathrm{Q})$
What is the value of E when everything is at equilibrium?
25% 1. $\mathrm{E}=\infty$
25% 2. $\mathrm{E}=\mathrm{o}$
25\% 3. $\mathrm{E}=\mathrm{E}^{\mathrm{o}}$
25% 4. None of the above
m Response Counter

[TP] At $25^{\circ} \mathrm{C}$

$\mathrm{E}=\mathrm{E}^{0}-\left(0.06 / n_{e}\right) \log (\mathrm{Q})$
What is the value of E when there are no products present?
25% 1. $\mathrm{E}=\infty$
25\% 2. $\mathrm{E}=\mathrm{o}$
 Response Counter

20

Slides on the Nemst equation, CH102 Spring 2016, A1 and A2 lecture 25	Copyright 2016 Dan Dill dan@buedu
$\begin{aligned} {[T P] \text { For } \mathrm{A} } & +\mathrm{B} \leftrightharpoons 2 \mathrm{C}+\mathrm{D} \text { at } 25^{\circ} \mathrm{C} \\ \mathrm{E}^{\mathrm{o}} & =\left(\mathrm{o} .06 / \mathrm{n}_{\mathrm{e}}\right) \log (\mathrm{K}) \end{aligned}$ What is the value of n_{e} for $2 \mathrm{~A}+2 \mathrm{~B} \leftrightharpoons 4 \mathrm{C}+2 \mathrm{D} \text { ? }$	
$\begin{array}{lll} 17 \% & 1 . & \mathrm{n}_{\mathrm{e}} \\ 17 \% & 2 . & 2 \mathrm{n}_{\mathrm{e}} \\ 17 \% & 3 . & \mathrm{n}_{\mathrm{e}}{ }^{2} \\ 17 \% & 4 . & \mathrm{n}_{\mathrm{e}} / 2 \\ 17 \% & 5 . & \mathrm{n}_{\mathrm{e}}{ }^{1 / 2} \\ 17 \% & 6 . & \text { None of the above } \end{array}$	
	10

[TP] For $\mathrm{A}+\mathrm{B} \leftrightharpoons 2 \mathrm{C}+\mathrm{D}$ at $25^{\circ} \mathrm{C}$

$\mathrm{E}^{0}=\left(0.06 / \mathrm{n}_{\mathrm{e}}\right) \log (\mathrm{K})$
What is the value of E° when all concentrations are doubled?

17%	1.	E^{o}
17%	2.	$2 \mathrm{E}^{\mathrm{o}}$
17%	3.	$\mathrm{E}^{\mathrm{o} 2}$
17%	4.	$\mathrm{E}^{\mathrm{o}} / 2$
17%	5.	$\mathrm{E}^{\mathrm{o} / 2}$

17% 5. $\quad \mathrm{E}^{01 / 2}$
17% 6. None of the above

Slides on the Nernst equation, CH102 Spring 2016, A1 and A2

Concentration cells: Mixing \rightarrow electric current

What happens when ink is dropped into water?
It disperses spontaneously
What happens when salt water is dropped into fresh water? It disperses spontaneously
Let's see how to harness such spontaneity of mixing ... to generate electricity!
[TP] What do you expect to be true about the process $\mathrm{Cl}^{-}(0.0001 \mathrm{M}) \rightarrow \mathrm{Cl}^{-}(1 \mathrm{M})$?

```
25% 1. E > O
25% 2. E=O
25% 3. E<0
25% 4. More information needed
```

Copyright 2016 Dan Dill dan@bu. edu
[IP] What do you expect to be true about the process $\mathrm{Cl}^{-}(1 \mathrm{M}) \rightarrow \mathrm{Cl}^{-}(0.0001 \mathrm{M})$?

25\% 1. $\mathrm{E}>\mathrm{O}$
25% 2. $\mathrm{E}=\mathrm{O}$
25% 3. $\mathrm{E}<\mathrm{O}$
25% 4. More information needed
[TP] What is true about the process $\mathrm{Cl}^{-}(1 \mathrm{M}) \rightarrow \mathrm{Cl}^{-}(0.0001 \mathrm{M})$?

```
25% 1. K>1
\(25 \%\) 2. \(K=1\)
```

25\% 3. $\mathrm{K}<1$
25\% 4. More information needed

Copyright $\odot 2016$ Dan Dili dan@bu.edu
10
29

Slides on the Nernst equation, CH102 Spring 2016, A1 and A22 lecture 25	Copyright 2016 Dan Dill dan@buedu	
[TP] What is true about the process $\mathrm{Cl}^{-}(1 \mathrm{M}) \rightarrow \mathrm{Cl}^{-}(0.0001 \mathrm{M}) ?$		
$\begin{array}{lll} 25 \% & 1 . & \mathrm{E}^{0}>0 \\ 25 \% & 2 . & \mathrm{E}^{\mathrm{o}}=\mathrm{o} \\ 25 \% & 3 . & \mathrm{E}^{\mathrm{o}}<\mathrm{o} \\ 25 \% & 4 . & \text { More information needed } \end{array}$		

[TP] A concentration cell is constructed with Q corresponding to the Cl

 concentration difference between sea water and river water at $25^{\circ} \mathrm{C}$. Assume that the Cl^{-}concentration (due to dissolved NaCl) of sea water is $35 \mathrm{~g} / \mathrm{L}$ and than that of river water is $1.0 \mathrm{mg} / \mathrm{L}$. The voltage of this cell is ..20\% 1. $\mathrm{E}=+0.13 \mathrm{~V}$
20% 2. $\mathrm{E}=+0.27 \mathrm{~V}$
20% 3. $\mathrm{E}=+0.54 \mathrm{~V}$
20% 4. $\mathrm{E}=+1.08 \mathrm{~V}$
20\% 5. Something else

Boston

