Slides on particle dispersal, pressure equilibration, and entropy,

Blind chance \& dumb luck

Slides on particle dispersal, pressure equilibration, and entropy
Everything-absolutely everything-that happens, happens solely because of blind chance and dumb luck
CH1O2 Spring 2016, A1 and A2 lecture 27

- Enumerating particle dispersal
- Practice with particle dispersal
- Maximum particle dispersal = uniform pressure
- Arrangements \rightarrow entropy
ify this ...

1. Learn to count the ways
2. Search for greatest number of ways

Counting distinguishable (unique) arrange

Say we have three girls and four boys.
What is the probability of calling them into line in the order $g g g b b b b$?

$$
\frac{3}{7} \times \frac{2}{6} \times \frac{1}{5}=\frac{1}{35}
$$

Counting distinguishable (unique) arrange

Say we have three girls and four boys.
What is the probability of calling them into line in the order $b g b g b g b$?

$$
\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}=\frac{1}{35}
$$

Counting distinguishable (unique) arrange

Say we have three girls and four boys.
If we ignore whether a child is boy or girl, what is the total number of arrangements?

$$
7 \times 6 \times 5 \ldots \times 1=7!=5040
$$

Counting distinguishable (unique) arrange

Say we have three girls and four boys.
For each particular arrangement, say $b g b g b g b$, how many ways can it come about?
$3!4!=144$

Counting distinguishable (unique) arrange
Say we have three girls and four boys.
This means the total number of arrangements can be expressed as
$7!=W \times 3!4!$
$5040=144 \mathrm{~W}$
$W=5040 / 144=35$

Counting distinguishable (unique) arrange

More generally, say we have j girls and kboys.
The number of unique arrangements of n_{1} objects of one kind and n_{2} object of another kind is

$$
W(j, k)=\frac{j+k}{j!k!}
$$

Practice with particle dispersal

See page 3 of
http://quantum.bu.edu/courses/ch102-spring-2016/notes/SecondLaw.pdf molecules be arranged?

0\% 1. 8
o\% 2. 10
0\% 3. 12
o\% 4. 120
o\% 5. None of these
\square 20 10 0
[TP] How many distinguishable ways can 5 water molecules and 2 ink molecules be arranged?

0\% 1. 14
0% 2. 21
0\% 3. 240
0\% 4. 5040
o\% 5. None of these
[IIP] How many distinguishable ways can 2 ink molecules be arranged among 12 water molecules?

0\% 1. 36
0\% 2. 240
o\% 3. 455
o\% 4. 720
o\% 5. None of these

Oston

Response

 Response 23 10The more water, the more ways ink disperses

```
                2 ink particles in water
```


Pressure in a gas becomes uniform

Why?

Lattice gas model of pressure

$$
1 /(\mathrm{R} \mathrm{~T}) \mathrm{P}=\mathrm{n} / \mathrm{V}=\text { gas density }
$$

$\mathrm{n}=$ particles
$\mathrm{V}=$ lattice positions

$P_{\text {left }}<P_{\text {right }}$

Left side: $\mathrm{n} / \mathrm{V}=\mathrm{o} / 4, \mathrm{~W}_{\text {left }} \cdots$
1
Right side: $\mathrm{n} / \mathrm{V}=3 / 8, \mathrm{~W}_{\text {right }}=\ldots$
56
$\mathrm{W}_{\text {total }}=\mathrm{W}_{\text {left }} \times \mathrm{W}_{\text {right }}=1 \times 56=56$ 37

$$
S=k_{\mathrm{B}} \ln (W)
$$

Why natural log?
Doubling size of system: $\mathrm{W} \rightarrow \mathrm{W} \times \mathrm{W}=\mathrm{W}^{2}$
Doubling size of system: $S \rightarrow 2 \mathrm{~S}$, so ...
Boltzmann's definition makes S scale with size of system (extensive).

$$
\mathrm{k}_{\mathrm{B}}=\mathrm{R} / \mathrm{N}_{\mathrm{A}}=1.4 \times 1 \mathrm{o}^{-23} \mathrm{~J} / \mathrm{K}
$$

