How many pairs of electrons are shared by each O and the C of formate, \(\text{HC(O)O}^- \)?

- 20% 1. 1 pair (2 electrons)
- 20% 2. 1 ½ pair (3 electrons)
- 20% 3. 2 pair (4 electrons)
- 20% 4. Something else
- 20% 5. The answer is different for the two O-C bonds

HC(O)O\(^-\) sp\(^2\) \(\sigma\) framework

9 pairs in Lewis structure, 7 pairs in \(\sigma\) framework, and so 2 pairs in (delocalized) \(\pi\) framework.

HC(O)O\(^-\) \(\pi\) framework

2 pairs in (delocalized) \(\pi\) framework

1 pair in \(\pi\) (bonding) and 1 pair in \(\pi^*\) (nonbonding);

bond order 1

Lecture 5 CH102 A1 (MWF 9:05 am) Monday, January 30, 2017

- Complete: Polyatomic MO recipe: Formate, \(\text{HC(O)O}^- \) (delocalized \(\pi\) bonds)
- Begin Mahaffy et al., Chapter 11: States of Matter
- Behavior of gases: Macroscopic versus microscopic understanding
- Kinetic molecular theory, PDF: http://goo.gl/njf3em
- Next: Continue ch11: Molecular speeds and their distribution; real gases (attraction and size)
How many pairs of electrons are shared by each O and the C of formate, HC(O)O⁻?

- 1 pair (2 electrons)
- 1 ½ pair (3 electrons)
- 2 pair (4 electrons)
- 4. Something else
- 5. The answer is different for the two O–C bonds

A container of volume V is filled with a gas at 20 °C. If V is decreased (while keeping T constant), pressure P exerted by the gas on the walls of the container must ...

- go down
- stay the same
- go up
- Further information needed

Behavior of gases
Macroscopic behavior

Very likely you know and have a lot of experience working with the ideal gas equation relating P, T, V, and n, ...

$$PV = R n T$$

The constant of proportionality is the gas constant ...

$$R = 8.314 \text{ J/(K mol)}$$

From

$$PV = R n T$$

we know that if V is decreased (while keeping T constant), the pressure P exerted by the gas on the walls of the container must go up, since the left-hand side of the equation is unchanged.

This is an example of macroscopic understanding.

Our goal is to understand this kind of behavior at a microscopic level.

That is, at the level of the individual particles of the gas.

Our method is called the kinetic molecular theory of gases.

Microscopic behavior

Our goal is to understand this kind of behavior at a microscopic level.

That is, at the level of the individual particles of the gas.

Our method is called the kinetic molecular theory of gases.

Kinetic-molecular theory of gases

Goal: Get microscopic expression for pressure P

Key idea 1: Pressure is due to force exerted by particles during collisions with the container walls

Key idea 2: Force is due to momentum change in collision with the container walls.

Note: Here upper-case P is used for pressure and lower-case p is used for momentum.
Kinetic-molecular theory of gases

1. We have not one particle, but a lot.
2. Particles move at different speed.

\[P_1 = \frac{m_1 u_1^2}{V}, \quad P_2 = \frac{m_2 u_2^2}{V} \]

\[P = \frac{m}{V} \left(u_1^2 + u_2^2 + \ldots + u_n^2 \right) \]

\[P = \frac{m}{V} \left(u_1^2 + u_2^2 + \ldots + u_n^2 \right) \sqrt{N} - \frac{m}{V} N u_{avg}^2 \]

\[P = \frac{m}{V} \left(u_1^2 + u_2^2 + \ldots + u_n^2 \right) \sqrt{N} - \frac{m}{V} N u_{avg}^2 \]

\[PV = \frac{m}{V} N u_{avg}^2 \]

\[PV = \frac{m}{V} N u_{avg}^2 \]