For steam → water

\[\Delta S_{\text{tot}} = + \frac{(40.65 \times 10^3 \text{ J/mol})}{T} - 108.9 \text{ J/(mol K)} \]

At \(T = 100 ^\circ C \), \(\Delta S_{\text{tot}} \) evaluates to...

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>< 0</td>
</tr>
<tr>
<td>2.</td>
<td>= 0</td>
</tr>
<tr>
<td>3.</td>
<td>> 0</td>
</tr>
</tbody>
</table>

A non-chemistry question

With apologies for a question not related to our course, ...

if you are taking a course in linear algebra, or plan on doing so soon, ...

please email Dan Dill, dan@bu.edu, with subject line “linear algebra”.

Thank you.
Taking stock

Spontaneity means that ...
\[\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} > 0 \]

Spontaneity does not require that ...
\[\Delta S_{\text{sys}} > 0 \text{ or } \Delta S_{\text{surr}} > 0 \]

A neat illustration of the separate roles of \(\Delta S_{\text{sys}} \) and \(\Delta S_{\text{surr}} \) is understanding why steam condenses and water boils.

[Quiz] For steam \(\rightarrow \) water, which of the following must be true?

- 17% 1. \(\Delta S_{\text{tot}} < 0 \)
- 17% 2. \(\Delta S_{\text{tot}} = 0 \)
- 17% 3. \(\Delta S_{\text{sys}} > 0 \)
- 17% 4. \(\Delta S_{\text{sys}} < 0 \) and \(\Delta S_{\text{surr}} < 0 \)
- 17% 5. \(\Delta S_{\text{sys}} < 0 \) and \(\Delta S_{\text{surr}} = 0 \)
- 17% 6. \(\Delta S_{\text{sys}} < 0 \) and \(\Delta S_{\text{surr}} > 0 \)

For steam \(\rightarrow \) water at 94 °C

Super cooled steam at 94 °C condenses spontaneously to water.
Spontaneity means \(\Delta S_{\text{tot}} > 0 \)
But "gas \(\rightarrow \) liquid" means \(\Delta S_{\text{sys}} < 0 \)
This means it must be \(\Delta S_{\text{surr}} \) that makes \(\Delta S_{\text{tot}} > 0 \)
How to get \(\Delta S_{\text{surr}} \)?
The trick: \(\Delta S_{\text{surr}} = \Delta H_{\text{surr}} / T = -\Delta H_{\text{sys}} / T \)
Hence we can always write \(\Delta S_{\text{tot}} = \Delta S_{\text{surr}} + \Delta S_{\text{sys}} \) as
\[\Delta S_{\text{tot}} = -\left(\Delta H_{\text{sys}} / T \right) + \Delta S_{\text{sys}} \]
[TP] For steam \rightarrow water

$$\Delta S_{\text{net}} = + \frac{(40.65 \times 10^3 \text{ J/mol})}{T} - 108.9 \text{ J/(mol K)}$$

At $T = 100 \degree C$, ΔS_{net} evaluates to ...

0% 1. < 0
0% 2. = 0
0% 3. > 0

[TP] For steam \rightarrow water

$$\Delta S_{\text{net}} = + \frac{(40.65 \times 10^3 \text{ J/mol})}{T} - 108.9 \text{ J/(mol K)}$$

At $T = 94 \degree C$, ΔS_{net} evaluates to ...

33% 1. < 0
33% 2. = 0
33% 3. > 0

[Quiz] For steam \rightarrow water, which of the following must be true?

17% 1. $\Delta S_{\text{sys}} < 0$
17% 2. $\Delta S_{\text{sys}} = 0$
17% 3. $\Delta S_{\text{sys}} > 0$
17% 4. $\Delta S_{\text{sys}} < 0$ and $\Delta S_{\text{sur}} < 0$
17% 5. $\Delta S_{\text{sys}} < 0$ and $\Delta S_{\text{sur}} = 0$
17% 6. $\Delta S_{\text{sys}} < 0$ and $\Delta S_{\text{sur}} > 0$
Taking stock

Spontaneity means that...

\[\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{sur}} > 0 \]

Spontaneity does not require that...

\[\Delta S_{\text{sys}} > 0 \text{ or } \Delta S_{\text{sur}} > 0 \]

A neat illustration of the separate roles of \(\Delta S_{\text{sys}} \) and \(\Delta S_{\text{sur}} \) is understanding why steam condenses and water boils.

The same approach works for melting and for sublimation.

\[\Delta S \] and freezing point depression

Make a diagram of \(S \) (vertical axis) for liquid and solid water (ice).

Connect the two entropies with an arrow corresponding to liquid \(\rightarrow \) solid.

What is the length of the arrow?

\[\Delta S \] and freezing point depression

How is \(S \) (liquid) changed by adding a small amount of solute?

What must happen to the length of the arrow connecting the water solution to pure ice?

How can this change come about?
How to determine ΔS_{sys} for a chemical reaction?

We have seen that we can get ΔS_{sys} for a phase transition using $\Delta S_{\text{tot}} = 0$ at the transition temperature.

Getting ΔS_{sys} for a chemical reaction requires a different approach.

In principle we could get ΔS_{sys} by analyzing changes in particle and energy dispersal in the reaction.

But, in practice, it is easier to get ΔS_{sys} by measuring heat flow between system and surroundings when they are in equilibrium.

At equilibrium, $\Delta S_{\text{tot}} = 0$, and so ...

$$\Delta S_{\text{sys}} = -\Delta S_{\text{tot}} = -\Delta H_{\text{sys}} / T = +\Delta H_{\text{sys}} / T$$