

Course overview

Dan Dill, dan@bu.edu
http://quantum.bu.edu/courses/ch131-summer-1-2019
./schedule.html

- Lectures and discussions will be held in PRB/150
- Holiday (no class) Monday, May 27
- Makeup lecture Friday, May 31

Course overview

Dan Dill, dan@bu.edu
http-H/quantinbu.edu/courses/ch131-summer-1-2019 (../schedule.html

- First discussion tomorrow: 9-9:50 pm, PRB/150
- Six discussion quizzes: first one this Thursday, May 23
- First lab tomorrow, Wednesday, May 22,1 pm, SCI/268
- Two lecture exams: Monday, June 3 and June 17
- Final exam: Thursday, June 27

Copyight © 2019 Dan Dill dan@buedu

Lecture quizzes

- Each lecture, based on the material covered during that lecture
- Administered using TurningPoint
- To receive credit, you must be registered
- Registration details at .../TP.html:
- TP account
- TP license
- TP clicker
- TP clicker registration

Course grade

Your scores for each part of the course will always be available to you on Blackboard, at https://goog/大zu1/a learn. bu. edu
Course grade is based on your overall course score

Discussion quizzes 10%
Lecture quizzes 15%
Lecture exams 30\%
Final exam 20\%
Lab 25\%

Academic conduct

You are bound by the provisions of the academic conduct code,
http://goo.gl/k78iy
Remember, we treat cheating with zero tolerance.

Mass spectrometer "weighs" atoms

Strip away an electron, accelerate positive ions, and then 8 deflect them in a magnetic field. Less deflection, heavier mass
Neon has three "isotopes": ${ }^{20} \mathrm{Ne},{ }^{21} \mathrm{Ne}$, and ${ }^{22} \mathrm{Ne}$
Relative peak heights \rightarrow isotopic abundance

Average mass of CH131 students?

75 students weigh 100 lbs
[1P] For our hypothetical class,
75 students weigh 100 lbs
100 students weigh 150 lbs, and
50 students weigh 200 lbs
100 students weigh 150 lbs
50 students weigh 200 lbs
Sketch the "mass spectrum" of the class, using just "counts" for the vertical axis average be?

Less than 100
2. Between 100 and 150
3. Between 150 and 200

0\%
4. Greater than 200

0\%

Average mass of CH 131 students?

75 students weigh 100 lbs
100 students weigh 150 lbs
50 students weigh 200 lbs
What is the expression for the fraction of students with mass $150 \mathrm{lbs}, f_{150}$?

$$
f_{150}=\frac{\# \omega / \text { moss } 150}{\text { tlal }}=\frac{100}{z 25}=
$$

Average mass of CH 131 students?

75 students weigh 100 lbs
100 students weigh 150 lbs
50 students weigh 200 lbs
In terms of f_{100}, f_{150}, and f_{200}, write the expression that evaluates to the exact average

Average mass of CH131 students?
 75 students weigh 100 lbs
 100 students weigh 150 lbs
 total mass $=75 \times 100 \mathrm{lbs}+100 \times 150 \mathrm{lbs}+50 \times 200 \mathrm{lbs}$
 average mass $=$ 「otal mass $/(75+100+50)$
 $=$ total mass 225
 $=(75 / 225) \times 100 \mathrm{lbs}+(100 / 225) \times 150 \mathrm{lbs}+(50 / 225) \times 200 \mathrm{lbs}$ $=f_{100} \times 100 \mathrm{lbs}+f_{150} \times 150 \mathrm{lbs}+f_{200} \times 200 \mathrm{lbs}$

[TP] For our hypothetical class, average weight of a CH131 student is 144 lbs Which of the following statements is true for this class?
of each student is 144
3. Neither of the statements is true.
The weight of each student is 144 lbs

8
RIry

Element identity and atomic number Z

```
    A}
```

 A}
 1 9

```
1 9
```


Number of protons $=$ atomic number $Z=19$ Relative atomic weight $=39.0983$
Where does the number 39.0983 come from?

Atoms of an element come in different "flavors"

Atoms with the same number of protons ..
but with different numbers of neutrons .. are chemically the same ...
but have different masses
We call such different flavors of atoms of an element isotopes
$39.0983 u$ is the average mass of the different kinds of atoms (isotopes) of K that are in a sample of K.
23
BOSTO

Atomic mass unit u

Exactly 12 g of ${ }^{12} \mathrm{C}$ contains $N_{\mathrm{A}}=6.02214 \times 10^{23}$ atoms
Exactly 12 g of ${ }^{12} \mathrm{C}$ contains $N_{\mathrm{A}}=6.02214 \times 10^{23}$ atoms
Therefore, the mass of one ${ }^{12} \mathrm{C}$ atom is ...
Therefore, the mass of one ${ }^{12} \mathrm{C}$ atom is ...
$12 \mathrm{~g} / N_{\mathrm{A}}=1.99265 \times 10^{-23} \mathrm{~g} \nprec$
$12 \mathrm{~g} / N_{\mathrm{A}}=1.99265 \times 10^{-23} \mathrm{~g} \nprec$
And so, $1 \mathrm{u}=$..
And so, $1 \mathrm{u}=$..
$(1 / 12) \times 1.99265 \times 10^{-23} \mathrm{~g}=1.66054 \times 10^{-24} \mathrm{~g}$
$(1 / 12) \times 1.99265 \times 10^{-23} \mathrm{~g}=1.66054 \times 10^{-24} \mathrm{~g}$
$1 u=\frac{g}{N_{A}}$
$1 u=\frac{g}{N_{A}}$
$==2 \times 10^{-23} \mathrm{~g}$
F
F
$==2 \times 10^{-23} \mathrm{~g}$
F
F
BOSTO
BOSTO
Average mass of an atom of K
Two isotopes: K-39 and K-41
K -39 peak at 38.9637 u , height
K-41 peak at $40 . \overline{9618} \mathrm{u}$, height 67
Write and then evaluate the expression whose value is the average mass in u of an atom of K.

$$
f_{39} 38.9637 \mathrm{u}+f_{41} 40.9618 \mathrm{u}=39.098 \mathrm{u}
$$

$$
f_{39}=\frac{933}{933+67}=0.933 \quad f_{41}=\frac{67}{106}
$$

$$
f_{39} * 38.9637 u+f_{41} * 40.9618 u
$$

$$
0.933 \quad 0.067
$$

Average mass of an atom of K

Two isotopes: K-39 and K-41
$\mathrm{K}-39$ peak at 38.9637 u , height 933
K-41 peak at 40.9618 u , height 67
The average mass in g of an atom of K is

$$
=39.098 \mathrm{u}
$$

$=39.098 \times(1 / 12) \times \overline{1 \overline{2 g \times}}\left(1 / N_{\mathrm{A}}\right)$
$=39.098\left(\sqrt{\left.\overrightarrow{V_{\mathrm{A}}}\right)}\right.$

$$
=6.4923 \times 10^{-23} \mathrm{~g}
$$

Average mass of any atom

The average mass of an atom of K is $39.098 \mathrm{~g} / N_{\mathrm{A}}$
The average mass of an atom of Br is $79.904 \mathrm{~g} / N_{\mathrm{A}}$
The average mass of an atom of H is $1.008 \mathrm{~g} / N_{\mathrm{A}}$
The average mass of an atom in $\mathrm{g} / N_{\mathrm{A}}$ is the number given on the periodic table.

Copyright © 2019 Dan Dill dan@uu.edu

Molar mass of any element

Molar mass is the mass of N_{A} "average" atoms of an element.
The average mass of an atom of K is $39.098 \mathrm{~g} / N_{\mathrm{A}}$
The molar mass of K is $N_{\mathrm{A}} \times\left(39.098 \mathrm{~g} / N_{\mathrm{A}}\right)=39.098 \mathrm{~g}$
The molar mass of Br is 79.904 g
The molar mass of H is 1.008 g
The molar mass of any element in g is the number given on the periodic table.

Atomic weight $=$ magnitude of average mass

The atomic weight of K is 39.098 (no units!)
The atomic weight of Br is 79.904
The atomic weight of H is 1.008
The atomic weight of an element is the number given on the peniodid takle.
39.098

Terms to distinguish

Relative atomic mass, A_{r} : ratio of mass of an isotope relative to mass of $1 / 12$ of one ${ }^{12} \mathrm{C}$ atom
A_{r} of ${ }^{13} \mathrm{C}$ is 13.00335 (unitless)
Atomic mass unit, $\mathrm{u}: 1 / 12$ mass of one ${ }^{12} \mathrm{C}$ atom

$$
1 \mathrm{u}=(1 / 12) \times(12 \mathrm{~g}) / N_{\mathrm{A}}=\mathrm{g} / N_{\mathrm{A}}=1.66054 \times 10^{-24} \mathrm{~g}
$$

Atomic weight: average of relative atomic masses of an element Atomic weight of C is 12.01 (unitless)
Molar mass, M : Mass in grams numerically equal to atomic weight;
that is, the mass in grams of N_{A} "average atoms" of an element
Molar mass of C is 12.01 g

