Lecture 4 CH131 Summer 1
 Tuesday, May 28, 2019

The will be lab on Wednesday, May 29

- Lewis diagrams
- Shapes and polarity of molecules

Begin ch9 (9.1-9.6): The gaseous state

- Pressure and temperature of gases
- Ideal gas law

Next lecture: Continue 9.1-9.6: Partial pressures; Kinetic theory of gases; real gases

Shape of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$

Steric number \rightarrow Geometry \rightarrow Shape
Copyright © 2019 Dan Dill dan@uu edu

Formal charge determines "best" structure

41. Determine the formal charges on all the atoms in fot lowing Lewis diagrams
$\mathrm{H}-\ddot{\mathrm{N}}=\ddot{\mathrm{O}}$ and $\mathrm{H}-\ddot{\mathrm{O}}=\ddot{\mathrm{N}}$
Which one would best represent bonding in the molecule HNO?

Expanded octet example

Problem 3.61, $\mathrm{ICl}_{4}{ }^{-} \quad$ 61. For each of the following molecules or molecular ions, give the steric number, sketch and name the approximate molecular geometry, and describe the directions of any distortions from the approximate geometry due to lone pairs. In each case, the central atom is listed first and the other atoms are all bonded directly to it
$\begin{array}{ll}\text { (a) } \mathrm{ICl}_{4}^{-} & \text {(b) } \mathrm{OF}_{2}\end{array}$
(c) BrO_{3}^{-}(d) CS_{2}

Polarity

Bond dipole \rightarrow molecular dipole

(a)

(d)
(b)

How solid, liquid, and gas phase differ

In solid phase, particles occupy fixed positions, 'close' to one another. Make a sketch.

In liquid phase, particles move about, but at comparable distances from one another as in the solid phase. Make a sketch.

How solid, liquid, and gas phase differ

In solid phase, particles occupy fixed positions, 'close' to one another. Make a sketch.

In liquid phase, particles move about, but at comparable distances from one another as in the solid phase. Make a sketch.
In gas phase, particles move about, but 'far' from one another, compared to distances in the solid and liquid phases. Make a sketch.
[TP] In gas phase, particles move about, but 'far' from one another, compared to distances in the solid and liquid phases. How many times farther do you think are gas particles from one another than are liquid or solid particles from one another?
$0 \% 1.10$
0% 2. 100
0% 3. 1,000
0% 4. 10,000
0% 5. 100,000
0% 6. 1,000,000
0\% 7. 10,000,000
0% 8. $>10,000,000$

Key features of gas behavior

1. Gas particles are ~ 10 times farther apart then liquid or solid particles (really!).
2. Gas behavior depends on number of particles (moles n), but not on what the particles are (really!).
3. Gas is characterized by volume, V, of the enclosing container
4. Gas is characterized by temperature, T, a measure of the average speed of the gas particles.
5. Gas is characterized by pressure, P.

Pressure = Force/Area

force/area $=$ mass \times acceleration/area $=\ldots$ energy/distance ${ }^{3}$
SI unit of pressure is the Pascal (Pa) ... force/area $=$ energy $/$ distance $^{3}=\ldots$ $\mathrm{J} / \mathrm{m}^{3}=\mathrm{Pa}$
$1 \mathrm{bar}=100,000 \mathrm{~Pa}=100 \mathrm{kPa}$
$1 \mathrm{~atm}=$ force exerted by $760 \mathrm{~mm}=$ column of $\mathrm{Hg}=. .$. $101325 \mathrm{~Pa}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$

1 atm is about 1% greater than 1 bar

Key features of gas behavior

Let's see how n, V, T, and P relate to one another

In terms of the particles of a gas ...

At a given P and n, explain how an increase in T must affect V.
Charles's law: $V \propto T$

In terms of the particles of a gas ...

At a given T and n, explain how an increase in V must affect P.
Boyle's law: $P \propto 1 / V$
Syright © 2019 Dan Dill dan@uu.edu
In terms of the particles of a gas ...
At a given P and T, explain how an increase in n must affect V.
Avogadro's hypothesis: $V \propto n$
\square

In terms of the particles of a gas ...

Ideal gas equation

From Charles's law, $V \propto T$, what must the volume of a gas be at $T=0^{\circ} \mathrm{C}$?

- Boyle's law: $P \propto 1 / V$
- Charles's law: $V \propto T$

From Charles's law, $V \propto T$, what must the volume of a gas be at $T=0$?

- Avogadro's hypothesis: $V \propto n$

These three relations combined into one relation...

$$
\text { Ideal gas equation: } P V \propto n T
$$

The constant of proportionality is R,

$$
P V=n R T
$$

$R=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$

Leature 4 CHI	abuedu
Pressure $=$ Force/Area	
$\mathrm{Pa}=\mathrm{J} / \mathrm{m}^{3}$	
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$	
$\mathrm{m}^{3}=1000 \mathrm{~L}$	
Convert $R=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ to $\mathrm{Latm} /(\mathrm{K} \mathrm{mol})$.	
Answer: $R=0.08206 \mathrm{~L} \mathrm{~atm} /(\mathrm{K} \mathrm{mol})$.	
EOSToN	25

