Lecture 5 CH131 Summer 1

Wednesday, May 29, 2019
The will be lab today Wednesday, May 29

- Complete: Ideal gas law
- Partial pressures
- Kinetic theory of gases
- Practice with particle picture of gases

Next lecture: Continue 9.1-9.6: Calculation of molecular speeds; Distribution of speeds; How intermolecular attraction affects gas behavior; How molecular size affects gas behavior; Gas law for real gases: van der Waals equation

Using ideal gas law

22 L of He is stored at 152 bar and $31^{\circ} \mathrm{C}$. How many balloons earreactilled with 5.0 L of He at 1.00 bar and $22^{\circ} \mathrm{C}$? Answer: $k=650$
$x * S L=$ $m=\frac{P_{1} V}{R T_{1}}=\frac{152 \mathrm{bar} * 22 \mathrm{~L}}{R 30+\mathrm{K}}$
$=\frac{P_{1} V_{1}}{R T_{1}} \cdot \frac{R_{2} T_{2}}{P_{2}}$
(H) $\frac{P_{1}}{P_{2}} \cdot \frac{T_{2}}{T_{1}} \cdot \frac{V_{1}}{5 L}=\frac{152 \text { bag }}{1.00 \text { bah }} \cdot \frac{295 K}{304 K} * \frac{22 \mathrm{~K}}{5 K}$

Bostron

$$
=650^{\circ}
$$

3
[TP] The volume of a balloon filled with $1300 \mathrm{~mol}_{\mathrm{H}}(\mathrm{g})$ at $23^{\circ} \mathrm{C}$ and 1 bar is ..
[Recall that $R=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$] $\quad V=M R T$

$$
\begin{aligned}
& \text { Mixtures of gases: Problem } 9.33 \\
& \text { 33. Sulfur dioxide reacts with oxygen in the presence of plati- } \\
& \text { num to give sulfur trioxide: } \\
& \underset{2 \mathrm{SO}_{2}(\mathrm{~g})}{26.0}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2_{2}^{17.0} \mathrm{SO}_{3}(\mathrm{~g}) \\
& \text { Suppose that at one stage in the reaction, } 26.0 \mathrm{~mol} \mathrm{SO}_{2} \text {, } \\
& 83.0 \mathrm{~mol} \mathrm{O}_{2} \text {, and } 17.0 \mathrm{~mol} \mathrm{SO} \text {, present in the reaction } \\
& \text { vessel at a total pressure o } 0.950 \mathrm{~atm} \text {. Calculate the mole } \\
& P_{\mathrm{SO}_{3}}=\not \chi_{\mathrm{SO}_{3}} P \\
& y_{\mathrm{SO}_{3}}=\frac{17.0}{26.0+83.0+17.0}=0.135 \\
& P_{\mathrm{SO}_{3}}=0.135 * 0.950 \text { atal }=\underset{2}{0.128 \text { atur }}
\end{aligned}
$$

Kinetic-molecular theory of gases
 $P=\frac{m R T}{V}$

Goal: Get microscopic expression for pressure P
Key idea 1: Pressure is due to force exerted by particles during collisions with the container walls

Key idea 2: Force is due to momentum change in collision with the container walls.

Note: Here upper-case P is used for pressure and lower-case p is used for momentum.

Kinetic-molecular theory of gases

Kinetic-molecular theory of gases

Kinetic-molecular theory of gases

Kinetic-molecular theory of gases

Force due to $j^{\text {th }}$ particle of mass m and speed u_{j} is $\Delta p / \Delta t \ldots$
A single particle j exerts a pressure
$\Delta p=2 m u_{j}$ (elastic collision)
$\Delta t=2 L / u_{j}$ (travel time to opposite wall and back)

$$
P_{j}=\frac{m u_{j}^{2}}{V}
$$

$$
F=\Delta p / \Delta t=m u_{j}^{2} / L
$$

Pressure due to $j^{\text {th }}$ particle of mass m and speed $u_{j} \ldots$

$$
P_{j}=\frac{F}{\text { area }}=\frac{F}{L^{2}}=\frac{m u_{j}^{2}}{L^{3}}=\frac{m u_{j}^{2}}{V}
$$

The total pressure P due to all of the N particles in the container is

$$
P=\frac{m}{V}\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{j}^{2}+\cdots+u_{N}^{2}\right)
$$

[TP] The different of speeds, u_{1}, u_{2}, etc., in a gas is due to ..
$\chi_{0 \%}$ 1. collisions of gas particles with the walls of the container.
(9\% 2. colisions of gas particles with one another
$0 \% 3$. attractions between the particles of the gas and the particles of the walls of the container
0% 4. attyctions between the particles of the gas.
$44 \% 5.1$ and 2
0% 6. 1 and 3
0% 7. 1, 2 and 3
38% 8. 1, 2, 3 and 4

Kinetic-molecular theory of gases

We can rewrite the total pressure due to the N particles,

$$
P=\frac{m}{V}\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{j}^{2}+\cdots+u_{N}^{2}\right)
$$

in terms of the average squared speed

$$
u_{\mathrm{avg}}^{2}=\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{j}^{2}+\cdots+u_{N}^{2}\right) / N
$$

by multiplying and dividing P by N,

$$
\begin{gathered}
P=\frac{m}{V} N\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{j}^{2}+\cdots+u_{N}^{2}\right) / N \\
=\frac{m}{V} N u_{\mathrm{avg}}^{2}=\frac{m}{V} N_{\mathrm{A}} n u_{\mathrm{avg}}^{2}=\frac{M}{V} n u_{\mathrm{avg}}^{2}
\end{gathered}
$$

Distribution of molecoilar speeds $\quad \begin{aligned} & \text { root -mean }- \text { squer } \\ & u_{\text {sms }}\end{aligned}=\sqrt{u_{a s}^{2}}=\sqrt{3 R I}$
Here is what happens to the speeds of 20,000 particles, all initially at the same rq speed, afterthey each have undergone successive numbers of collisions

Copyighto 2019 Dan Dill dan@bu.edu

Kinetic-molecular theory of gases

The expression for pressure,

$$
P=\frac{n M}{V} u_{\mathrm{avg}}^{2} \text { (one dimension) }
$$

assumes the particle moves in just one dimension, back and forth between opposite walls, say the walls perpendicular to the x axis.

A more detailed treatment that takes into account motion in all three dimensions shows that the pressure on any one wall is only $1 / 3$ as great,

$$
P=\frac{n M}{3 V} u_{\mathrm{avg}}^{2} \text { (three dimensions) }
$$

Calculation of molecular speeds

We now have two expressions for pressure:
The microscopic expression $P=\frac{n M u_{\text {avg }}^{2}}{3} / V$
and the macroscopic expression $P=n R T / V$
Comparing these, we get that $\frac{M u_{\mathrm{avg}}^{2}}{3}=R T \ldots$
and so that the average squared speed is $u_{\mathrm{avg}}^{2}=\frac{3 R T}{M}$

Calculation of molecular speeds

$$
u_{\mathrm{avg}}^{2}=\frac{3 R T}{M}
$$

is the connection between...
microscopic motion, quantified as $u_{\text {avg }}^{2}$, and ...
the macroscopic concept temperature, T, and molar mass, M
The square root of the mean (average) squared speed is the rms speed ...

$$
u_{\mathrm{rms}}=\sqrt{u_{\mathrm{avg}}^{2}}=\sqrt{\frac{3 R T}{M}}
$$

Practice with particle picture of gases

Let's consider some questions to develop a particle-level understanding of why gases behave the way they do

[TP] Gas pressure is due to ..

94% 1. collisions of gas particles with the walls of the container.
6% 2. collisions of gas particles with one another
$0 \% 3$. attractions between the particles of the gas and the particles of the walls of the container
$0 \% 4$. attractions between the particles of the gas.
$0 \% \quad 5.1$ and 2
0\% 6. 1 and 3
0% 7. 1, 2 and 3
0% 8. 1, 2, 3 and 4
[Quiz] A container of volume V is filled with a gas at $20^{\circ} \mathrm{C}$. If V is decreased (while keeping T constant), the pressure P exerted by the gas on the walls of the container goes up $(P=n R T / V)$. Why?
$6 \% 1$. The particles move faster
0% 2. The particles move slower
$0 \% 3$. The particles hit the walls harder
0% 4. The particles hit the walls less hard
94% 5. The particles hit the walls more often
$0 \% 6$. The particles hit the walls less often

[TP] When a gas is heate up $(P=n R T / V)$. Why?

$0 \% 1$. The particles move faster
0% 2. The particles move slower
$0 \% 3$. The particles hit the walls harder
0% 4. The particles hit the walls less harder
100% 5. The distance travelled between collisions must increase
$0 \% 6$. The distance travelled between collisions must decrease
[TP] Two 1 L containers, A and B, each contain equal numbers of particles at $20^{\circ} \mathrm{C}$. The particles of gas in A are twice as heavy as those in B. What are the relative pressures in the two containers?
0% 1. Pressure of A is half the pressure of B
100% 2. Pressure of A equals the pressure of B
$0 \% \quad 3$. Pressure of A is twice the pressure of B
$0 \% 4$. Pressure of A is four times the pressure of B

Practice with particle picture of gases

Two 1 L containers, A and B, each contain equal numbers of particles at $20^{\circ} \mathrm{C}$. The particles of gas in A are twice as heavy as those in B . The pressure in the two containers is the same.

How can this be?

$$
P=(n M / V)^{1 / 3} u_{a v g}^{2}=(n M / / V)^{1 / 3}(3 R T / / M)
$$

Pressure depends on speed AND mass
Heavy particles move s lowly!!!
Light particles move quick y ! !!
But at the same temperature, they exert the same pressure.

```
MOSTON
```

