Lecture 6 CH131 Summer 1

Thursday, May 30, 2019
The will be lab on Friday, May 31

- Molecular speeds
- Distribution of molecular speeds, CDF https://goo.gl/gzgjQE
- How intermolecular attraction affects gas behavior
- How molecular size affects gas behavior
- Gas law for real gases: van der Waals equation

Ch10: Solids, liquids and phase transitions

- Intermolecular forces

Next lecture: Continue ch 10

```
[TP] The rms speed, \(u_{\text {rms }}\), of \(\mathrm{O}_{2}\) at \(25^{\circ} \mathrm{C}\) is about ..
\(\left(R=8.314 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}=8.314 \frac{\mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~K} \mathrm{~mol}}\right)\)
    \(0 \%\) 1. \(250 \mathrm{~m} / \mathrm{s}\)
\(100 \%\) 2. \(500 \mathrm{~m} / \mathrm{s}\)
    \(0 \%\) 3. \(750 \mathrm{~m} / \mathrm{s}\)
    \(0 \%\) 4. \(1000 \mathrm{~m} / \mathrm{s}\)
    \(=\frac{m}{s} \sqrt{\frac{25 * 300 * 10^{3}}{32}}\)
    \(=\frac{M}{S} \sqrt{250 * 10^{3}}\)
                            \(\frac{\mathrm{m}}{\mathrm{s}} \sqrt{25}+10^{2}=500 \mathrm{~m} / \mathrm{s}\)

\section*{Root mean square speed}

The root mean square speed of a gas is the square root of the mean (average) squared speed \(u^{2}\) avg,
\[
\begin{aligned}
& u_{\mathrm{rms}}=\sqrt{u^{2}{ }^{\text {avg }}}=\sqrt{3 \mathrm{R} / / \sqrt{G}} \\
& R=8.314 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}=8.314 \frac{\sqrt{\mathrm{~kg} \mathrm{~m}^{2} \mathrm{e}}}{\mathrm{Kmol}}
\end{aligned}
\]
\[
\sqrt{\frac{k g m^{2}}{K \operatorname{mos} s^{2} g / m u s t+k g / 1000 g}}
\]
\[
=\sqrt{m^{2} / s^{2}}=\mathrm{m} / \mathrm{s}
\]
```

Calculate rms speed of O_{2} at $25^{\circ} \mathrm{C}$
$u_{\text {avg }}^{2}=\frac{3 R T}{M}$
$u_{\mathrm{rms}}=\sqrt{u_{\mathrm{avg}}^{2}}=u \sqrt{\frac{3 R T}{M}}$
$R=8.314 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}=8.314 \frac{\mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~K} \mathrm{~mol}}$

```

Answer: \(482 \mathrm{~m} / \mathrm{s} \approx 500 \mathrm{~m} / \mathrm{s}\)
[TP] The rms speed of \(\mathrm{O}_{2}\) at \(25^{\circ} \mathrm{C}\) is about \(500 \mathrm{~m} / \mathrm{s}\). Without using a calculator, use the rms speed of \(\mathrm{O}_{2}\) to estimate that the rms speed of \(\mathrm{H}_{2}\) at the same temperature is about ...


\section*{Distribution of molecular speeds}

Say we 20,000 particles, all with the same speed \(u=500 \mathrm{~m} / \mathrm{s}\).
Make a sketch of the corresponding distribution of speeds.

\section*{Distribution of molecular speeds}

Distribution of speeds is a plot of the number offparticle (y axis) at each speed ( \(x\) axis).


\section*{Distribution of molecular speeds}

Say we 20,000 particles, all with the same speed \(u=500 \mathrm{~m} / \mathrm{s}\).
Make a sketch of the corresponding distribution of speeds.


\section*{Distribution of molecular speeds}

We have said that collisions between gas particles results in the particles having different speeds.
Make a sketch of a possible distribution of just three speeds, 300,500 , and 700 \(\mathrm{m} / \mathrm{s}\), of the 20,000 particles.

Copyightio 2019 Dan Dill dan@ubuedu

\section*{Distribution of molecular speeds}

We have said that collisions between gas particles results in the particles having different speeds.
Make a sketch of a possible distribution of just three speeds, 300,500 , and 700 \(\mathrm{m} / \mathrm{s}\), of the 20,000 particles.

\section*{}

\section*{Distribution of molecular speeds}

We have said that collisions between gas particles results in the particles having different speeds.
It is convenient to express the distribution in terms of fractional number of particles rather than number of particles.

\section*{Distribution of molecular speeds}

We have said that collisions between gas particles results in the particles having different speeds.
It is convenient to express the distribution in terms of fractional number of particles rather than number of particles.


\section*{Distribution of molecular speeds}

Here is what happens to the speeds of 20,000 particles, all initially at the same speed, after they each have undergone successive numbers of collisions.
Bonomo \& Riggi,
Am. J. Phys., Vol 52, p 54 (1984) http://dx.doi.org/10.1119/1.13809


\section*{Distribution of molecular speeds}

At 300 K , the rms speed of \(\mathrm{O}_{2}\) is \(u_{r m s}=500 \mathrm{~m} / \mathrm{s}\).
Sketch the Maxwell-Boltzmann distribution of speeds of \(\mathrm{O}_{2}\) at 300 K , from 0 \(\mathrm{m} / \mathrm{s}\) to \(4000 \mathrm{~m} / \mathrm{s}\), marking the position of \(u_{r m s}\) on the \(x\) axis.

\section*{Distribution of molecular speeds}

At 300 K , the rms speed of \(\mathrm{O}_{2}\) is \(u_{r m s}=500 \mathrm{~m} / \mathrm{s}\).
Sketch the Maxwell-Boltzmann distribution of speeds of \(\mathrm{O}_{2}\) at 300 K , from 0 \(\mathrm{m} / \mathrm{s}\) to \(4000 \mathrm{~m} / \mathrm{s}\), marking the position of \(u_{r m s}\) on the \(x\) axis,


\section*{Distribution of molecular speeds}

The rms speed, \(u_{r m s}\), is slightly higher than the most probable speed, \(u_{m p}\) because of the exponential tail extending to very high speeds.
\[
u_{\mathrm{mp}}=\sqrt{2 / 3} u_{r m s} \approx 0.82 u_{r m s}
\]

\section*{\(u_{\text {rms }}\) versus temperature}

The rms speed of \(\mathrm{O}_{2}\) at 300 K is \(500 \mathrm{~m} / \mathrm{s}\) and the rms speed of \(\mathrm{O}_{2}\) at 1200 K is \(1000 \mathrm{~m} / \mathrm{s}\). Sketch the distribution of speeds for \(\mathrm{O}_{2}\) at these two temperatures on the same axes, marking the position of the two rms speeds on the \(x\) axis.

\section*{\(u_{\text {rms }}\) versus temperature}

Add to your sketch the distribution of speeds of \(\mathrm{H}_{2}\) at 300 K .
\[
u_{\text {smu }}=\sqrt{\frac{3 R T}{M}}
\]


\section*{\(u_{\text {rms }}\) versus temperature}

The rms speed of \(\mathrm{O}_{2}\) at 300 K is \(500 \mathrm{~m} / \mathrm{s}\) and the rms speed of \(\mathrm{O}_{2}\) at 1200 K is \(1000 \mathrm{~m} / \mathrm{s}\). Sketch the distribution of speeds for \(\mathrm{O}_{2}\) at these two temperatures on the same axes, marking the position of the two rms speeds on the \(x\) axis.


\section*{\(u_{\text {rms }}\) versus temperature}

Add to your sketch the distribution of speeds of \(\mathrm{H}_{2}\) at 300 K .

\section*{Effect of intermolecular attraction}

Gas particles attract one another: van der Waals \(a\)
\# hitting wall \(\propto \frac{n}{V}\)
\# pulling back \(\propto \frac{n}{V}\)
combined effect \(\propto\left(\frac{n}{V}\right)^{2}\)
\(p_{\text {observed }}=p_{\text {ideal }}-a\left(\frac{n}{V}\right)^{2}\)
Copyright \(\odot 2019\) Dan Dill dan@buedu


\section*{Energy density and molecular attractions}

We have seen that we can interpret pressure as \(\frac{\text { energy }}{\text { volume }}, 1 \mathrm{~Pa}=1 \mathrm{~J} / \mathrm{m}^{3}\)
Let's apply this interpretation to
\[
p_{\text {observed }}=p_{\text {ideal }}-a\left(\frac{n}{V}\right)^{2}
\]
\(p_{\text {ideal }}=n R T / V\) is just the kinetic energy density (kinetic energy per unit volume) of the ideal gas.

Similarly, \(-a\left(\frac{n}{V}\right)^{2}\) is the corresponding potential energy density of the gas due to the interpartical interactions.
[TP] Predict the effect of intermolecular attraction on the pressure exerted by a gaseous molecule in a collision with the wall of its container. The stronger the attraction, the ...
\(18 \%\) 1. greater the pressure
\(82 \%\) 2. smaller the pressure
\(0 \% 3\). The pressure will not be affected
\(0 \% 4\). Cannot answer without knowing the temperature
\(0 \% 5\). Cannot answer without knowing the polarity of the molecule
[TP] Equal amounts of gases A and C are in a single container. The molar masses of the gases are identical, but gas C has stronger intermolecular forces. The container is pierced with a hole 0.003 mm in diameter. After 5 minutes, the container will contain ...

6\% 1. more A than C
\(0 \%\) 2. the same amount of \(A\) and \(C\)
\(94 \%\) 3. more C than A

[TP] A gas in a rigid 2.5 L container has a pressure of \(1.3 \mathrm{bar}=130 \mathrm{kPa}\). If 1.2 grams of small glass beads are added to the container (without changing the temperature), the pressure of the gas will ...
\(33 \%\) 1. increase
\(33 \%\) 2. be unaffected
\(33 \%\) 3. decrease

[TP] Gas particles have a volume measured by van der Waals \(b\). For \(\mathrm{SF}_{6}, b=88 \mathrm{~mL} / \mathrm{mol}\). The percent of gas container volume taken up by the \(\mathrm{For} \mathrm{SF}_{6}, b=88 \mathrm{~mL} / \mathrm{mol}\). The per
\(\mathrm{SF}_{6}\) molecules themselves is ...
\begin{tabular}{rll}
\(12 \%\) & 1. & \(0.01 \%\) \\
\(24 \%\) & 2. & \(0.05 \%\) \\
\(12 \%\) & 3. & \(0.1 \%\) \\
\hline \(35 \%\) & 4. & \(0.5 \%\) \\
\hline \(18 \%\) & 5. & \(1 \%\) \\
\(0 \%\) & 6. & \(5 \%\)
\end{tabular}


\section*{Effect of molecular size}

Gas particles have a volume: van der Waals \(b\)
\[
V=V_{\text {container }}=V_{\text {empty }}+b n
\]

For \(\mathrm{SF}_{6}, b=88 \mathrm{~mL} / \mathrm{mol}\)
\(\%\) of molar gas volume ...


\section*{A gas law for "real" gases: van der Waals equation}

We know the ideal gas law \(p V_{-}=n R T\) where \(p\) does not account for interparticle attractions ...
\[
p=p_{\text {ideal }}=p_{\text {observed }}+a\left(\frac{n}{V_{\text {container }}}\right)^{2}
\]
and \(V\) does not account for particle volume ...
\[
V=V_{\text {empty }}=V_{\text {container }}-b n
\]

Combine these two expressions into an equation relating \(p_{\text {observed }}, V_{\text {container }}\), and \(T\).

A gas law for "real" gases: van der Waals equation
We know the ideal gas law \(p V=\overparen{\sim T}\) dhere \(p\) does not account for interparticle attractions and \(V\) does not account for particle volume ...
\[
\begin{aligned}
& p=p_{\text {ideal }}=p_{\text {observed }}+a\left(\frac{n}{V_{\text {container }}}\right)^{2} \\
& V=V_{\text {empty }}=V_{\text {container }}-b n \\
& p_{\text {ideal }} V_{\text {empty }}=\left\{\frac{p_{\text {obseryed }}+a\left(V_{\text {container }}\right.}{}\right)^{2}
\end{aligned}
\]

This is known as the van der Waals equation

\section*{Working with the van der Waals equation}

In terms of \(p=p_{\text {observed }}\) and \(V=V_{\text {container }}\), the van der Waals equation is
\[
\left\{\begin{array}{l}
\text { Pobsesod } \\
p+a\left(\frac{n}{V}\right)^{2}
\end{array}\right\}(V-b n)=n R T
\]

For calculations, rearrange this to express the observed \(p\) in terms of \(n, V, T, a\), and \(b\).
\[
p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2}
\]

Working with the van der Waals equation
\[
p=\frac{n R T}{\left.V-\frac{\square n}{n}\right)}-a\left(\frac{n}{V}\right)^{2} \text { and } R=0.08314 \mathrm{~L} \text { bar } /(\mathrm{K} \mathrm{~mol})
\]
\(p\) bar
For \(\mathrm{Cl}_{2}, a=6.58\) bar \(\mathrm{L}^{2} / \mathrm{mol}^{2}\) and \(b=0.0562 \mathrm{~L} / \mathrm{mol}\). What are the ideal and observed pressures of 3.00 mol of \(\mathrm{Cl}_{2}\) confined in 4.00 L at \(500 . \mathrm{K}\) ?

\section*{Working with the van der Waals equation}
\[
p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2} \text { and } R=0.08314 \mathrm{~L} \text { bar } /(\mathrm{K} \mathrm{~mol})
\]

For \(\mathrm{Cl}_{2}, a=6.58\) bar \(\mathrm{L}^{2} / \mathrm{mol}^{2}\) and \(b=0.0562 \mathrm{~L} / \mathrm{mol}\). What are the ideal and observed pressures of 3.00 mol of \(\mathrm{Cl}_{2}\) confined in 4.00 L at 500 . K ?


\section*{Working with the van der Waals equation}
\[
p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2} \text { and } R=0.08314 \mathrm{~L} \mathrm{bar} /(\mathrm{K} \mathrm{~mol})
\]
 observed pressures of 3.00 mol of \(\mathrm{Cl}_{2}\) confined in 4.00 L at 500 . K ?
\[
\begin{aligned}
& p_{\text {ideal }}=\frac{n R T}{V}=31.3 \text { bar (confirm yourself) } \\
& p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2}=32.5 \text { bar }-3.7 \text { bar }=28.8 \text { bar (confirm yourself) }
\end{aligned}
\]

Since the observed pressure is smaller than the ideal pressure, the effect of \(a\) is more important than \(b\) at 500 . K

\section*{Working with the van der Waals equation}
\[
p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2} \text { and } R=0.08314 \mathrm{~L} \text { bar } /(\mathrm{K} \mathrm{~mol})
\]

For \(\mathrm{Cl}_{2}, a=6.58\) bar \(\mathrm{L}^{2} / \mathrm{mol}^{2}\) and \(b=0.0562 \mathrm{~L} / \mathrm{mol}\). What are the ideal and observed pressures of 3.00 mol of \(\mathrm{Cl}_{2}\) confined in 4.00 L at 3000 . K ?

\section*{Working with the van der Waals equation}
\[
p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2} \text { and } R=0.08314 \mathrm{~L} \text { bar } /(\mathrm{K} \mathrm{~mol})
\]
 observed pressures of 3.00 mol of \(\mathrm{Cl}_{2}\) confined in 4.00 L at 3000 . K ?
\[
\begin{aligned}
& p_{\text {ideal }}=\frac{n R T}{V}=187.1 \mathrm{bar}(\text { confirm yourself } \quad \text { (31.3 of Sook) } \\
& p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2}=195.3 \mathrm{bar}-3.7 \mathrm{bar}=191.6 \mathrm{bar}(\text { confirm yourself })
\end{aligned}
\]

Since the observed pressure is larger than the ideal pressure, the effect of \(b\) is more important than \(a\) at 3000 . K.

\section*{Working with the van der Waals equation}


In general, the effect of \(b\) is muted at low \(T\) and so the effect of \(a\) dominates there, while for high \(T\) the effect of \(b\) dominates.

For 3.00 mol of \(\mathrm{Cl}_{2}\) confined in


\section*{Working with the van der Waals equation}
\[
p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2} \text { and } R=0.08314 \mathrm{~L} \text { bar } /(\mathrm{L} \mathrm{~mol})
\]

For \(\mathrm{Cl}_{2}, a=6.58 \operatorname{bar~L}^{2} / \mathrm{mol}^{2}\) and \(b=0.0562 \mathrm{~L} / \mathrm{mol}\). What is the observed and ideal pressures of 8.00 mol of \(\mathrm{Cl}_{2}\) confined in 4.00 L at \(27{ }^{\circ} \mathrm{C}\) ? Use
\[
\begin{aligned}
& p_{\text {ideal }}=\frac{n R T}{V}=49.9 \mathrm{bar} \\
& p=\frac{n R T}{V-b n}-a\left(\frac{n}{V}\right)^{2}=56.2 \mathrm{bar}-26.3 \mathrm{bar}=29.9 \mathrm{bar}
\end{aligned}
\]

Since the observed pressure is smaller than the ideal pressure, the effect of \(a\) is more important than \(b\) at \(27^{\circ} \mathrm{C}\)

\section*{Problem 7e:9.49 and 8e:9.51}

\section*{\(a=3.640 \mathrm{~L}^{2} \mathrm{bar} / \mathrm{mol}\)}
\(b=0.04267 \mathrm{~L} / \mathrm{mol}\)

> 49. Using (a) the ideal gas law and (b) the van der Waals equation, calculate the pressure exerted by 50.0 g carbon dioxide in a \(1.00-\mathrm{L}\) vessel at \(25^{\circ} \mathrm{C}\). Do attractive or repulsive forces dominate?

\section*{Intramolecular and intermolecular forces}

\section*{Intermolecular forces: stickiness!}

Chemical changes are related to breaking and formation of covalent bonds due to intramolecular forces within molecules.
\(Z \mathrm{HEH}+\theta \in \mathrm{O} \rightarrow 2\) HEOEXI
- Stickiness: consequence of molecule \(\bullet \cdot\) molecule
- Coulombs law: opposite charges attract, like repel
- Three kinds of intermolecular electrical attraction ...

Physical changes are governed by intermolecular forces```

