

Relative boiling points

Effects of

- Dispersion - ahways, but weak
- Dipole-dipole interaction - pober motecules, moderate
- Hydrogen bonding - N-H, O-H, F-HI, otsougest

Dipole can be attractive or repulsive

Dispersion always attractive

Why is $\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$?

Colligative properties

Non-volatile solute (negligible vapor pressure) ...

- lowers vapor pressure of solvent: $P_{1}=x_{1} P^{\circ},{ }_{1} P=P_{1}^{\circ}-P_{1}=x_{2} P^{\circ}{ }_{1}$

Colligative properties

Non-volatile solute (negligible vapor pressure) ..

- lowers vapor pressure of solvent: $P_{1}=x_{1} P^{\circ}{ }_{1}, \Delta P=P_{1}^{\circ}-P_{1}=x_{2} P^{\circ}{ }_{1}$
- raises boiling point of solvent: $T_{\mathrm{b}}-T^{\circ}{ }_{\mathrm{b}}=i m_{\text {solute }} K_{\mathrm{b}}=m_{\mathrm{c}} K_{\mathrm{b}}$
$X_{1}=$ more fractione $2.8 \mathrm{kPa} 0.96 \times 3 \mathrm{kPa} \quad \mathrm{P}^{0}=3 \mathrm{kPa}$
 nud $\rightarrow 1$ nart 1 not $X_{1}=\frac{55 \text { mut }}{55+2}=0.96$ $1 \mathrm{log} 4-0=\operatorname{looog} * \frac{1 \mathrm{ml}}{12 g}$ 1 ant onal in LL \& SS Now

$i=\#$ of rad Joblute pastiches in solvence/ mure of \& lote :
$\mathrm{NaCl}: i=7$
Sugar: $i=3$
$M=$ molality $=\frac{\text { mux of solate }}{\mathrm{kg} \text { of solverat }}$ $K_{b}=$ boiling print ebevation crustant
T_{b}^{0}

The more particles, the greater the effect

Sugar in water, 1 mol of particles per mol of sugar, so $i=1$
NaCl in water, 2 mol of particles per mol of NaCl , so $i=2$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ in water, 3 mol of particles per mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, $\mathrm{So} i=3$

$$
\mathrm{Na}_{2} \mathrm{SO}_{t}(\mathrm{~s}) \rightarrow 2 \mathrm{Nat}(\mathrm{aq})+\mathrm{SO}_{4}^{2}(\mathrm{aq})
$$

Colligative properties

Non-volatile solute (negligible vapor pressure) ...

- lowers vapor pressure of solvent: $P_{1}=x_{1} P^{\circ}{ }_{1}, \Delta P=P^{\circ}{ }_{1}-P_{1}=x_{2} P^{\circ}{ }_{1}$
- raises boiling point of solvent: $T_{\mathrm{b}}-T^{\circ}{ }_{\mathrm{b}}=i m_{\text {solute }} K_{\mathrm{b}}=m_{\mathrm{c}} K_{\mathrm{b}}$

$$
i m_{\text {solate }}=m_{\xi}
$$

Freezing point example again

Calculate the freezing point of 3.00 kg of water to which has been added 525 g of sodium chloride, $\mathrm{NaCl}, K_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$

$$
\begin{aligned}
& \text { Answer: }-11.1^{\circ} \mathrm{C} l^{\mathrm{C}}=58.4 \mathrm{~g} / \text { move } \\
& T_{f}^{\circ}-T_{f}=\frac{2 * 525 \phi / 58.4 \phi \text { lughe }}{3.00 \mathrm{~kg}} 1.86(\mathrm{~K}) \neq 1 \mathrm{mpe} \\
& =11.1 \\
& T_{f}=-11.6^{\circ} \mathrm{C}
\end{aligned}
$$

Freezing point example

Calculate the freezing point of 3.00 kg of water to which has been added 525 g of $, \mathrm{OHC}_{2} \mathrm{H}_{4} \mathrm{OH}, \mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mo}$

```
\(\underbrace{\text { Answer: }-5.24^{\circ} \mathrm{C}}_{f}{ }_{f}^{\prime}=\mathrm{m}_{c} K_{f}\)
    \(m_{c}=1 * 525 \% / 62.1 \% / n \omega e\)
    \(T_{f}^{0}-T_{f}=\frac{(525 / 62.1) \operatorname{sit}}{3.00 \mathrm{~kg}} 1.86 \mathrm{~K} \frac{\mathrm{~kg}}{\operatorname{sit}}\)
        \(\left.=5.25 \mathrm{~K}, \begin{array}{l}T_{f} \\ T_{f}=-5.25 \\ T^{\circ} \mathrm{C}\end{array}\right\}\)
```

[TP] A non-volatile solute lowers the vapor pressure of the solvent. This in turn means the boiling point of the solvent must increase. Why? Because ...
$0 \% 1$. higher temperature is necessary to evaporate the solute
$35 \% 2$. the solute particles stick to the solvent particles, analogous to van der Waals a
65% 3. at the normal boiling point the vapor pressure of the solvent will be too low
$0 \% 4$. the solute vapor pressure is so low
$0 \% 5$. Some other reason
[TP] The vapor pressure of water at $32^{\circ} \mathrm{C}$ is 4.76 kPa . A glass of water is sealed in a 1.00 L container filled with air at $32^{\circ} \mathrm{C}$. After the water comes to equilibrium with the air in the container, the total pressure is 1 bar and there is 500. g of liquid water in the glass, and the partial pressure of water vapor in the container is ..

```
12% 1 less that 4.76 kPa
8% 2. 4.76 kPa
more than 4.76 kPa
```

$0 \% \quad$ 4. Further information required
$\underbrace{12 \%}_{0 \%} \frac{2 .}{2 \%} 4.76 \mathrm{kPa}, ~ m o r e ~ t h a n ~ 4.76 \mathrm{kPa}$
[Quiz] Then, 35.0 g of ethylene glycol if dissolved in the liquid water. After the water returns to equilibrium, the mass of the liquid water ...
$35 \% \quad$ 1. will have decreased

Copyrghte 2019 Dan Dill dan@buedu

Effect of solute on vapor pressure

The vapor pressure of water at $32^{\circ} \mathrm{C}$ is 4.76 kPa . A glass of water is sealed in a container filled with air at $32^{\circ} \mathrm{C}$. After the water comes to equilibrium with the air in the container, the total pressure is 1.00 bar, there is 500 g of liquid water in the glass, and the volume of the container in addition to the glass and liquid water is 1.00 L

Then 35.0 g of ethylene glycol if dissolved in the water.
Calculate change in the mass of the liquid water after it has returned to equilibrium.

Answer: The mass of liquid water will increas by 0.000673

Colligative properties

Non-volatile solute (negligible vapor pressure) ..

- lowers vapor pressure of solvent: $P_{1}=x_{1} P^{\circ}{ }_{1}, \Delta P=P_{1}^{\circ}-P_{1}=x_{2} P^{\circ}{ }_{1}$
- raises boiling point of solvent: $T_{\mathrm{b}}-T^{\circ}{ }_{\mathrm{b}}=i m_{\text {solute }} K_{\mathrm{b}}=m_{\mathrm{C}} K_{\mathrm{b}} \quad \quad \stackrel{ }{\mathrm{C}} \mathrm{C}_{\text {solute }}$
- lowers freezing point of solvent: $T^{\circ}{ }_{\mathrm{f}}-T_{\mathrm{f}}=i m_{\text {solute }} K_{\mathrm{f}}=m_{\mathrm{C}} K_{\mathrm{f}}$

$$
=M_{c}^{\text {soleta }}
$$

If solute cannot pass through a membrane ... $\quad=\dot{M} M_{\text {sduter }} R T$

- the solvent will create an osmotic pressure: $\Pi=i$ (solute $R T=M_{\mathrm{c}} R T$

Roadmap of osmotic pressure calculations

Osmotic pressure $\Pi=i c R T$

$$
C=\frac{\text { nuwk of solute }}{L \text { q solubore }}=\text { Manalasity }
$$

1. Use measured osmotic pressure, Π, and temperature, T, to evaluate concentration $C=\Pi /(i R T)$, in mol/L.
2. Use cell volume to express concentration in terms of moles, $n=c V$
3. Use solute mass to calculate molar mass, $M=$ mass $/ n$.

BOSTON

Osmotic pressure $\Pi=i$ c $R T$

1.40 g of polyethylene ($i=1$) dissolved in 100. mL of benzene generates an osmotic pressure of 0.248 kPa at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the polyethylene.

1. Calculate the concentration...
$1.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$

2. Calculate the moles..

$$
\begin{gathered}
\frac{1.00 \times 10^{-4} \mathrm{LL}}{L} * \frac{100 \mathrm{~mL} * \mathrm{LL}}{1000 \mathrm{mlL}} \\
=1.00 \times 10^{-5} \mathrm{md}
\end{gathered}
$$

BOSTON

Osmotic pressure $\Pi=i$ c $R T$

1.40 g of polyethylene $(i=1)$ dissolved in 100 mL of benzene generates an osmotic pressure of 0.248 kPa at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the polyethylene

1. Calculate the concentration...
$1.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
2. Calculate the moles... $1.00 \times 10^{-5} \mathrm{~mol}$
```
BOSTON
```


Osmotic pressure $\Pi=i c R T$

1.40 g f polyethylene $(i=1)$ dissolved in 100 mL of benzene generates an osmotic pressure of 0.248 kPa at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the polyethylene.

1. Calculate the concentration...
$1.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$

2. Calculate the moles...

$$
10^{-5} \mathrm{~mol}
$$

Osmotic pressure $\Pi=i c R T$

1.40 g of polyethylene $(i=1)$ dissolved in 100 mL of benzene generates an osmotic pressure of 0.248 kPa at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the polyethylene.

1. Calculate the concentration... $1.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$

$1.00 \times 10^{-4} \mathrm{~m}$ $10^{-5} \mathrm{~mol}$
2. Calculate the molar mass...

$$
1.40 \times 10^{+5} \mathrm{~g} / \mathrm{mol}
$$

