## Lecture 9 CH131 Summer 1 <br> Wednesday，June 5， 2019

－Postscript on osmotic pressure，$\Pi=R T M_{\mathrm{c}}$
Ch12：Thermodynamic processes and thermochemistry
－Thermodynamic concepts
－Heat and work
－System and surrounding
－Heat depends on whether there is work，http：／／goo．gl／1w80D0
Next lecture：Enthalpy change of reaction，$\Delta_{\mathrm{r}} H$ ．Hess＇s law．Standard enthalpy of formation of $\mathrm{X}, \Delta_{\mathrm{f}} H^{\circ}(\mathrm{X})$ ．Example thermochemistry problems

## Osmotic pressure $\Pi=i c R T$

1.40 g of polyethylene $(i=1)$ dissolved in 100 mL of benzene generates an osmotic pressure of 0.248 kPa at $25^{\circ} \mathrm{C}$ ．Calculate the molar mass of the polyethylene．

3．Calculate the molar mass．．．

$$
1.40 \times 10^{+5} \mathrm{~g} / \mathrm{mol}
$$



4．Calculate $n$


## Osmotic pressure $\Pi=i c R T$

1.40 g of polyethylene（ $i=1$ ）dissolved in 100 mL of benzene generates an osmotic pressure o $0.248 \mathrm{kPa} 25^{\circ} \mathrm{C}$ ．Calculate the molar mass of the polyethylene．

3．Calculate the molar mass．．．

$$
1.40 \times 10^{+5} \mathrm{~g} / \mathrm{mol}
$$



4．Calculate $n$

$$
\begin{aligned}
& M=m \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \\
& M=\frac{1.40 \times 10^{5} \mathrm{f} / \mathrm{mul}}{(2 \times 12.011+4 \times 1.00 \mathrm{~g}) \mathrm{g} / \text { mul }} \\
&=4990 \quad \text { Fos eact moblecabe } \\
& \text { Here are } 2 * 4990
\end{aligned}
$$

［TP］ 10 mg of substance dissolved in 1.0 mL of water generates an osmotic
presstre of 1.0 kPa ，at $25^{\circ} \mathrm{C}$ ．The molar mass of the solute $(i=1)$ is
31\％1． $250 \mathrm{~g} / \mathrm{mol}$

$0 \%$ 2． $500 \mathrm{~g} / \mathrm{mol}$
$=\frac{1}{8 \cdot 3 * 300}$
$56 \%$ 3． $1000 \mathrm{~g} / \mathrm{mol}$
$0 \% \quad 5 . \quad 5000 \mathrm{~g} / \mathrm{mol}$
（2）$c V=\frac{10^{-3} y \cdot 3 * 300}{8.3 * 300} \frac{\operatorname{N⿰日月}}{x}$
$6 \%$ 6．Some other value
（3）$M=\frac{10^{-3} g+8}{10^{-3}}$ nol
$=$


## First law of thermodynamics

Energy, $U$, is exchanged between system and surroundings as heat, $q$, and work, w,

$$
\Delta U=q+w
$$

Positive values increase energy of system
$\Delta U=q+w$
$q>0$ : heat flow into the system
$w>0$ : work done on the system

## How do we know heat is present?

How do we know heat is present?

```
Since \(q_{\text {sur }}=m c \Delta T_{\text {sur }} \ldots\)
```

we can use temperature change of surroundings to monitor heat flow.
Temperature decrease in surroundings, $\Delta T_{\text {sur }}<0$ means ..
energy flow into system from surroundings ... energy of system goes up ...
and so, $q>0$.
 get waskers

## How do we know heat is present?

Temperature increase in surroundings, $\Delta T_{\text {sur }}>0$, means $\ldots$
energy flow out of system into surroundings ..
energy of system goes down ...
and so, $q<0$.
Copyighto 2019 Dan Dill dan@bu.edu

## How do we know if work is present?

Macroscopic movement, for example of a piston.


Work done by gas: force $\times$ distance $=(F / A) \times(\Delta x A)=P_{\text {ext }} \Delta V$ Work done on gas: $w=-P_{\mathrm{xt}} \Delta V$

Expansion of gas pushes against $P_{\text {ext }}$ : gas expends energy, $w<0$
Compression of gas pushed on by $P_{\text {ext }}$ : gas gains energy, $w>0$
[TP] When $\mathrm{NaHCO}_{2}(s)$ is dissolved in 200 mL of $\mathrm{HCl}(a q)$, the temperature of the solutiongoes down. This means the chemical reaction between the $\mathrm{NaHCO}_{3}(s)$ and the $\operatorname{HCI}(a q)$ results in the chemical system
$\begin{aligned} 0 \% & \text { 1. giving off heat and so } q>0 \\ 29 \% & \text { 2. giving off heat and so } q<0\end{aligned}$
$0 \% \quad 3$. absorbing heat and so $q<0$ $71 \%$ 4. absorbing heat and so $q>0$

> Usually, solution in whod the $N \times n$ tabes place is part of sunsandings
[TP] When $\mathrm{NaHCO}_{3}(s)$ is dissolved in 200 mL of $\mathrm{HCl}(a q), \mathrm{CO}_{2}(g)$ bubbles form This means the chemical reaction between the $\mathrm{NaHCO}_{3}(s)$ and the $\mathrm{HCl}(a q)$ results in the chemical system ..

```
18% 1. doing work and so w>0
71/2. Doing work and so w<0
6% 3. having work done on it and so w>0
6% 4. having work done on it and so w<0
```


## Sign conventions for $q$ and $w$

Copyngrif 2019 Dan Difl dan@bureau

[TP] Aqueous solutions at the same temperature are combined, a reaction occurs, and the temperature of the combined solutions goes up. The water is
$13 \%$ 1. the system
$80 \%$ the surroundings
7\% 3. neither system nor surroundings

## [TP] Aqueous solutions at the same temperature are combined, a reaction occurs, and the temperature of the combined solutions goes up. The reactants <br> 18\% 1. the system <br> $0 \%$ 2. the surroundings <br> 20 3. prrt of the system <br> $0 \%$ 4. part of the surroundings

[TP] Aqueous solutions at the same temperature are combined, a reaction occurs, and the temperature of the combined solutions goes up. The reactants and products together are ...

[^0][Quiz] Acetic acid dissolves in water as a weak electrolyte, $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$ In the acetic acid solution, the acetate ion, $\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$, is ..
$0 \%$ 1. the system
$0 \%$ 2. the surroundings
$100 \%$ 3. part of the system
$0 \%$ 4. part of the surroundings


Lecture 9 CH131 Sunmer 12019
Copyright © 2019 Dan Dill dan@bu.edu

## Heat depends on whether there is work $q_{p} \neq q_{v}$

For a given chemical transformation of given amount of material, the energy change is fixed,

$$
\Delta U=U_{\text {final }}-U_{\text {initial }}
$$

$$
U \left\lvert\, \begin{aligned}
& \frac{P}{A \Delta U} U_{\text {fuid }}^{\text {fuid }} \\
& R \\
& R \\
& U_{\text {fuid }}-U_{\text {uisitu }}
\end{aligned}\right.
$$

If the process takes place in a sealed, rigid container, there can be no volume change and so work is 0

$$
w=-P \Delta V=-P_{\mathrm{ext}} \times 0=0
$$

This means all of the energy change must appear as heat.

## Heat depends on whether there is work

For a given chemical transformation of given amount of material, the energy change is fixed,

$$
\Delta U=U_{\text {final }}-U_{\text {initial }}
$$

If the process takes place in an open container, there may be volume change (if there is net formation or consumption of gas) and so work may not be 0 ,

$$
w=-P \Delta V \neq 0
$$

This means only some of the energy change appears as heat.

## Heat depends on whether there is work

## The reaction

$\mathrm{NaHCO}_{3}(s)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{Na}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
is endothermic, $q>0$ (solution/surroundings cool)
How much cooling is there at constant volume $\left(q_{V}\right)$
compared to that at constant pressure $\left(q_{\mathrm{P}}\right)$ ?
[IP] Without having measured the reaction
$\mathrm{NaHCO}_{3}(s)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{Na}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
if it were carried out in an open beaker we know that..
$100 \% \quad$ 1. work is done on the surroundings, $w<0$.
$0 \% \quad 2$ work is done on the system, $w>0$.
$0 \%$ 3. no work is done.
$0 \%$ 4. Unable to say without further information
[TP] Without having measured the reaction
$\mathrm{NaHCO}_{3}(s)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{Na}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
if it were carried out in a sealed beaker we know that ..
$0 \%$ 1. work is done on the surroundings, $\mathrm{w}<0$.
$6 \% \quad$ 2. work is done on the system, $\mathrm{w}>0$.
94\% 3. nowork is done.
$0 \%$ 4. Unable to say without further information

$[T P] \mathrm{NaHCO}_{3}(s)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{Na}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
is endothermic, $q>0$ (solution/surroundings cool). How much cooling is there at constant volume $\left(q_{\mathrm{V}}\right)$, compared to that at constant pressure $\left(q_{\mathrm{P}}\right)$ ?
$\left\{\begin{array}{rl}12 \% & 1 .\end{array}\right.$ Oooling is smaller at constant volume, $q_{\mathrm{V}}<q_{\mathrm{P}}$
$\begin{gathered}88 \% ~ 3 . ~ C o o l i n g ~ i s ~ g r e a t e r ~ a t ~ c o n s t a n t ~ v o l u m e, ~ \\ \mathrm{v}\end{gathered}>q_{\mathrm{P}}$
$U$


24

## $\Delta U=q_{V}$ versus $\Delta H=q_{P}$


$q_{v}$ less positive
$\Delta T=-4^{\circ} C$
Endothermic reaction that does work on surroundings will get less cold at constant volume.

$$
\Delta U=q_{\mathrm{V}} \text { versus } \Delta H=q_{\mathrm{P}}
$$



Exothermic reaction that has work done on it will get less hot at constant volume.

## $q_{\mathrm{P}}$ differs only a little from $q_{\mathrm{V}}$

$\Delta U=q_{\mathrm{v}}=q_{\mathrm{p}}+\underline{w}$
$q_{\underline{V}}-q_{\mathrm{P}}=\underline{w}=-P_{\text {ext }} \Delta \underline{V}=-\Delta n_{\mathrm{g}} R T$

$$
\Delta m_{g}=M_{g}(P)-M_{g}(R)
$$

or 1 mol change in the amount of gas as a result of the reactiof, und

$$
1 \mathrm{~mol} \times R T=8.314 \mathrm{~J} / \mathrm{K} \times 300 \mathrm{~K} \approx \beth_{2} .5 \mathrm{~kJ} \quad \Delta M_{\rho}=-
$$

Typical values of $q$ are several orders of magnitude larger, and so $q_{\mathrm{v}}$ and $q_{\mathrm{P}}$ always have the same sign.

$$
\begin{aligned}
=-2.5 b_{1} & \text { warsow } \sim 2.5 \\
& q v \text { anow } \sim 100
\end{aligned}
$$

BOSTON
UNIVRSTry


[^0]:    $94 \%$ 1. the system
    $0 \%$ 2. the surroundings
    $0 \%$ 3. part of the system
    $6 \%$ 4. part of the surroundings

