

Problem 7e and 8e 13.31

Atomic or molecular oxygen?

At what temperature will oxygen spontaneously decompose, $\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{O}(g)$?

- $\Delta H_{\mathrm{f}}(0, g)=249.2 \mathrm{~kJ} / \mathrm{mol}$
- $S^{\circ}(0, g)=161.1 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$
- $S^{\circ}\left(\mathrm{O}_{2}, g\right)=205.0 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$

How to proceed?

At $300 \mathrm{~K}, \Delta H \quad \square$
$\Delta G=2 \times 249.2-300 \mathrm{~K} \times \underline{10^{-3}}(2 \times 161.1-2 \underline{205.0})=+463 \mathrm{~kJ}$
Since >0, not spontaneous, so mostly molecules at 300 K

Atomic or molecular oxygen?

At what temperature will oxygen spontaneously decompose, $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g})$?

At what T will decomposition become spontaneous?
$\Delta G=0=2 \times 249.2-T \times 10^{-3}(2 \cdot \times 161.1-205.0)$
$T=2 \cdot 249.2 \times 10^{3} /(2 \times 161.1-205.0)=4253 \mathrm{~K}$
So, for T above 4253 K , mostly atoms
Copyight © 2019 Dan Dill dan@bu edu

[TP] A certain chemical reaction is not spontaneous at 300 K . The entropy change for the reaction is $+130 \mathrm{~J} / \mathrm{K}$. The reaction must be ..

100%	1.	endothermic
0%	2.	exothermic
0%	3.	neither $(\Delta H=0)$
0%	4.	More information needed

[TP] At 300 K , hydrogen and oxygen react explosively to form water. The free energy of formation of water is -237 k . Based on this information, at very high temperature, water will ...

71\% 1. decompose into H_{2} and O_{2}
24% 2. will not decompose into H_{2}

8

[Quiz] A chemical reaction is endothermic and has $\Delta S_{\text {sys }}<0$.
This means the reaction will be spontaneous ... $\quad \triangle \Delta G_{2}=\Delta H-T \Delta S$

35%	1.	only at low temperature
12%	2.	only at high temperature
6%	3.	always

$47 \% 4$
47% 4. never
0% 5. Further information required

Spontaneity of "reactants" \rightarrow "products" $R \rightarrow P$

If products (right side) increase with time, we say the reaction is spontaneous
If reactants (left side) increase with time, we say the reaction is nonspontaneous.
If the amount of reactants and products do not change with time, we say the reaction is at equilibrium.

Spontaneous approach to equilibrium: $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$

Reaction quotient Q measures progress

Practiee: Rroblem 14.5

$\begin{array}{cccc}\mathrm{CO} & \mathrm{H}_{2} \mathrm{O} & \mathrm{CO}_{2} & \mathrm{~Hz}_{2} \\ 0.10 & 0.10 & 0.70 & \end{array}$ $K=0.70 * \mathrm{PHz}$
$K=\frac{0.70 * \mathrm{PHz}^{0.10)(0.10)}=3.9}{(0.9}$

$$
P_{H_{2}}=\frac{3.9 * 0.01}{0.70}
$$

Practice: Problem 14.11

Copyighto 2019 Dan Difl dan@ou:edu
11. Using the law of mass action, write the equilibrium expres-
\rightarrow sion for each of the following reactions.
\rightarrow (a) $\mathrm{Zn}(s)+2 \mathrm{Ag}^{+}(a q) \rightleftarrows \mathrm{Zn}^{2+}(a q)+2 \mathrm{Ag}^{(\mathrm{a}}(\mathrm{O}) \mathrm{OH}^{-}(a q)$
\rightarrow (c) $2 \mathrm{As}_{4}(\mathrm{OH})_{6}^{3-}(a q)+6 \mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{As}_{2} \mathrm{O}_{3}(\mathrm{~s})+$

c) $K=\frac{\left[+1 c_{3} 5\right.}{[50} 5$
$K=\frac{\left.\left[\operatorname{Ascos}_{3} \cos _{6}^{3}\right]^{2}\right]^{2}\left(\mathrm{PaO}_{2}\right)^{6}}{}$

Copyight © 2019 Dan Dili dan@bu. diu

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

The figure shows how the partial pressures of the $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} change with time due to the chemical reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

for certain initial conditions
Q versus K is the key to assessing spontaneity
If $Q<K$, product must form to get to equilibrium, so spontaneous

If $Q>K$, reactants must form to get to equilibrium, so nonspontaneous

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \\
& \text { The reaction quotient is }
\end{aligned} \quad Q=\frac{N_{\xi}}{V} \mathrm{R}_{3}
$$

The numerical value of the reaction quotient when the concentrations have their equilibrium values

$$
\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{e}} \text { and }\left[\mathrm{NO}_{2}\right]_{\mathrm{e}}
$$

and so no longer change with time, is called the equilibrium constan

$$
K=\left[\mathrm{NO}_{2}\right]_{\mathrm{e}}^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{e}}
$$

[TP] The figure shows how the partial pressures of the $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} change with time due to the chemical reaction
$\xrightarrow[\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons]{\sim}$
for crtain initial condition. At these initial conditions, the following is known about the chemical reaction.

BOSTON

[TP] At the initial conditions for the reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
the following is known about the ratio Q / K.
20% 1. It is greater than 1
$\begin{array}{llll}7 \% & 2 \text {. It is equal to } 1\end{array}$

```
73% 3. It is Igs than 1
```

0% 4. The ratio is not known without further information

Copyrighte 2019 Dan Dill dan@bu:edu

- further information

[TP] For the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

which curve on the right shows the corresponding change of Q with time?

[Quiz] The figure shows how the partial pressures of the $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} change with time due to the chemical reaction
$\mathrm{HP}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \downarrow$
for certain initial conditions. At these initial conditions, the following is known about the chemical reaction.
$6 \% 1$. It is spontaneous
0% 2. It is at equilibrium
94% 3. It s non-spontaneous
0% 4. Its spontaneity is not known without further information

