Lecture 16 CH131 Summer 1

Wednesday, June 19, 2019

- Pure strong acid
- Pure weak acid
- Partially neutralized weak acid
- Exactly neutralized weak acid
- Neutralized weak acid with excess base.
- Practice with titration.

Next lecture: Ch16: Solubility equilibria
Please bring laptop or tablet for online evaluation

3

Solving acid and base equilibria

- Pure strong acid
$K_{a} \gg 1$
$K_{a} \ll 1$
[Pure weak acid
- Partially neutralized weak acid $\quad \backslash H A($ eq $\rangle+\mathrm{OH}^{-}(\mathrm{eq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{qq})+\mathrm{A}_{\mathrm{e}}^{-}(\mathrm{qq}) 4$
- Exactly neutralized weak acid $\left.A^{-}(\mathrm{qq})+\mathrm{H}_{2} \mathrm{Ol}\right) \geqslant \mathrm{HA}(\mathrm{qq})+\mathrm{OH}^{-}$(aq)
- Neutralized weak acid with excess base

Weak acid K_{a} values

We can get the numerical value of K_{a} by analyzing the acid equilibrium.

With these simplifications, the acid equilibrium constant is ...

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{c_{a}}=\frac{\left(10^{-\mathrm{pH}}\right)^{2}}{c_{a}} .
$$

Weak acid K_{a} values

We can get the numerical value of K_{a} by analyzing the acid equilibrium.

For example, if $c_{a}=0.10$ and $\mathrm{pH}=4$, then \ldots

$$
K_{a}=\frac{\left(10^{-\mathrm{pH}}\right)^{2}}{c_{a}}=\frac{\left(10^{-4.0}\right)^{2}}{0.10}=1.0 \times 10^{-7}
$$

Solving acid and base equilibria

- Pure strong acid
- Pure weak acid
- Partially neutralized weak acid
- Exactly neutralized weak acid
- Neutralized weak acid with excess base

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too little" base added

After "too little" base is added there is present both some acid, HA, and its conjugate base, A^{-}. This means there are two possible ways the system can come to equilibrium,

$$
\begin{aligned}
& \mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q), K=K_{a} \\
& \mathrm{~A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HA}(a q)+\mathrm{OH}^{-}(a q), K=K_{b}=K_{a} / K_{w}
\end{aligned}
$$

One will result in an acidic solution, and the other will result in a basic solution. Which one to use?

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too little" base added

$V_{\mathrm{b}}=100 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.20 \mathrm{M} \mathrm{of} \mathrm{OH}^{-}$is combined with $V_{\mathrm{a}}=100 . \mathrm{mL}$ of
$c_{\mathrm{a}}=0.40 \mathrm{M}$ of HA, $K_{\mathrm{a}}=1.0 \times 10^{-5}$

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too little" base added

After "too little" base is added there is present both some acid, HA, and its conjugate base, A^{-}. This means there are two possible ways the system can come to equilibrium,

$$
\begin{aligned}
& \mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q), K=K_{a} \\
& \mathrm{~A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HA}(a q)+\mathrm{OH}^{-}(a q), K=K_{b}=K_{a} / K_{w}
\end{aligned}
$$

Use the one that has the larger K !
Say $K_{a}=1.0 \times 10^{-5} \gg K_{b}=K_{a} / K_{w}=10^{-14} /\left(1.0 \times 10^{-5}\right)=1.0 \times 10^{-9}$, use

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q), K=K_{a}
$$

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too little" base added

After "too little" base is added there is present both some acid, HA, and its conjugate base, A^{-}. This means there are two possible ways the system can come to equilibrium,

$$
\begin{aligned}
& \mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q), K=K_{\mathrm{a}} \\
& \mathrm{~A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HA}(a q)+\mathrm{OH}^{-}(a q), K=K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}
\end{aligned}
$$

Use the one that has the larger K !
Say $K_{\mathrm{a}}=1.0 \times 10^{-9} \ll K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=10^{-14} /\left(1.0 \times 10^{-9}\right)=1.0 \times 10^{-5}$, use.

$$
\mathrm{A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HA}(a q)+\mathrm{OH}^{-}(a q), K=K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}
$$

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too little" base added

$V_{b}=100 . \mathrm{mL}$ of $c_{b}=0.20 \mathrm{M}$ of OH^{-}is combined with $V_{a}=100 \mathrm{~mL}$ of

Solving acid and base equilibria

- Pure strong acid
- Pure weak acid
- Partially neutralized weak acid
- Exactly neutralized weak acid
- Neutralized weak acid with excess base

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "just enough" base added
$V_{\mathrm{b}}=100 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.40 \mathrm{M}$ of OH^{-}is combined with $V_{\mathrm{a}}=100 . \mathrm{mL}$ of $c_{\mathrm{a}}=0.40 \mathrm{M} \mathrm{of} \mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-6}$ and $K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=1.0 \times 10^{-8}$

$$
\begin{aligned}
& \text { ' }\left\{\mathrm{H}_{2} \mathrm{Ol}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \equiv \mathrm{H}_{8} \mathrm{O}^{+}(\mathrm{gq})+\mathrm{OH}^{-}(\mathrm{aq}) K_{\omega}\right.
\end{aligned}
$$

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "just enough" base added

Solving acid and base equilibria

- Pure strong acid
- Pure weak acid
- Partially neutralized weak acid
- Exactly neutralized weak acid
- Neutralized weak acid with excess base

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too much" base added
$V_{\mathrm{b}}=200 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.30 \mathrm{M}$ of OH^{-}is combined with $V_{\mathrm{a}}=200 \mathrm{~mL}$ of
$c_{\mathrm{a}}=0 . \overline{20} \mathrm{M}$ of $\mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-6}$ and $K_{\mathrm{b}}=1.0 \times 10^{-8} \quad, \quad, 0.400$

Boston

Step 2: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when "too much" base added

$V_{\mathrm{b}}=200 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.30 \mathrm{M} \mathrm{of}_{\mathrm{OH}}{ }^{-}$is combined with $V_{\mathrm{a}}=200 . \mathrm{mL}$ of $c_{\mathrm{a}}=0.20 \mathrm{M}$ of $\mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-6}$ and $K_{\mathrm{b}}=1.0 \times 10^{-8}$

Solving acid and base equilibria

- Pure strong acid
- Pure weak acid
- Partially neutralized weak acid

Exactly neutralized weak acid
Neutralized weak acid with excess base

Practice with titration: "Too little" OH^{-}

$\rightarrow 0.200 \mathrm{~L}$ of $0.100 \mathrm{M} \mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$
and 0.100 L of 0.050 M NaOH solution $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.0 \times 10^{-4}$

