

Lecture 16 CH	Lecture 16 CH131 Summer 1 2019 Copyright ©						
Weak acid <i>K</i> _a values							
We can get the numerical value of K_a by analyzing the acid equilibrium.							
	Initial	ca	10-7	0	0		
	Change	-x	+x	+x			
	Equilibrium	$c_a - x$	$10^{-7} + x$	x	Ka		
	Approximate	$\approx c_a$	$\approx x$	x	Ka		
For example, if $c_a = 0.10$ and pH = 4, then $K_a = \frac{(10^{-\text{pH}})^2}{c_a} = \frac{(10^{-4.0})^2}{0.10} = 1.0 \times 10^{-7}$							
BOSTON UNIVERSITY	BOSTON UNIVERSITY						

Lecture 16 CH131 Summer 1 2019	Copyright © 2019 Dan Dill dan@bu.edu			
Step 2: $[H_3O^+]$ when "too little" base added				
After "too little" base is added there is present both some acid, HA, and its conjugate base, A^- . This means there are two possible ways the system can come to equilibrium,				
$\mathrm{HA}(aq) + \mathrm{H}_2\mathrm{O}(l) \rightleftharpoons \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{A}^-(aq), K = K_a$				
$A^{-}(aq) + H_2O(l) \rightleftharpoons HA(aq) + OH^{-}(aq), K = K_b = K$	K_a/K_w			
Use the one that has the larger <i>K</i> !				
Say $K_a = 1.0 \times 10^{-5} \gg K_b = K_a/K_w = 10^{-14} / (1.0 \times 10^{-5}) = 1.0 \times 10^{-9}$, use				
$\mathrm{HA}(aq) + \mathrm{H}_2\mathrm{O}(l) \rightleftarrows \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{A}^-(aq), K = K_a$				
BOSTON UNIVERSITY	12			

Lecture 16 CH131 Summer 1 2019	Copyright © 2019 Dan Dill dan@bu.edu
Practice with titration: Pure	weak acid
0.200 L of 0.100 M HA, $K_a = 1.0 \times 10^{-4}$ at 2	5 °C: $[H_30^+] = 3.2 \times 10^{-3}$
BOSTON UNIVERSITY	23

