

Lecture 18 CH131 Summer 1 2019 [TP] Based on the balanced reduction half-reaction, how many moles of electrons are consumed when 1 mole of $O_2(g)$ is reduced to hydrogen peroxide, $H_2O_2(aq)$? 18% 1 1 25 + (2 + 20 + 2) + (2 - 2)

Lecture 18 CH131 Summer 1 2019	Copyright © 2019 Dan Dill dan@bu.edu	Lecture 18 CH131 Summer 1 2019	Copyright © 2019 Dan Dill dan@bu.edu
Exploring th At $25 \circ C E(any Q) =$ $E^\circ = +(0.0)$	e Nernst equation	[TP] At 25 °C $E = E^{\circ} - (0.06/n_{e}) \vee \log(Q)$ What is the value of <i>E</i> when everything is in standard 0% 1. $E = \infty$ 13% 2. $E = 0$ 97% 3. $E = E^{\circ}$ 0% 4. None of the above	L <u>states?</u>
	23	BOSTON	24

