Molar gas constant

CH102 General Chemistry, Summer 1 2012, Boston University

Student: "Which value of the gas constant should I use?"
Teacher: "Use $R=8.31446 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$ and then convert units as needed."

The currently accepted SI value of the molar gas constant is given at http://physics.nist.gov/cgi-bin/cuu/Value?r as

$$
R=8.31446 \mathrm{~J} /(\mathrm{mol} \mathrm{~K})
$$

The gas constant can be expressed in terms of the SI unit of pressure bar using

$$
1 \mathrm{~J}=1 \mathrm{~L} \mathrm{kPa}=0.01 \mathrm{~L} \text { bar, }
$$

since $1 \mathrm{bar}=100 \mathrm{kPa}$, and it can be expressed in terms of the historical but now non-standard unit of pressure atm using

$$
1 \text { J = 0.01 L atm/1.01325, }
$$

since 1 atm is defined as exactly 1.01325 bar. With these conversions, the molar gas constant can be expressed alternatively as the three different numerical values

$$
\begin{aligned}
& R=8.31446 \mathrm{~J} /(\mathrm{mol} \mathrm{~K}) \\
& \quad=0.0831446 \mathrm{~L} \text { bar } /(\mathrm{mol} \mathrm{~K}) \\
& =0.0820573 \mathrm{~L} \text { atm } /(\mathrm{mol} \mathrm{~K})
\end{aligned}
$$

Rather than memorize these three different values of R, it is recommended instead to remember just the single SI value $R=8.31446 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$, and then to use the conversions $1 \mathrm{~J}=1 \mathrm{~L} \mathrm{kPa}=0.01 \mathrm{~L}$ bar and $1 \mathrm{~atm}=1.01325$ bar as needed.

