# $\Delta U=q_{v}$ versus $\Delta H=q_{p}$ 

CH101 Fall 2013

Boston University

## $\Delta U=q_{\mathrm{v}}$ versus $\Delta H=q_{\mathrm{P}}$



Exothermic reaction that does work on surroundings will get hotter at constant volume.

## $\Delta U=q_{\mathrm{v}}$ versus $\Delta H=q_{\mathrm{P}}$


$q_{v}$ less negative

Exothermic reaction that has work done on it will get less hot at constant volume.

## $\Delta U=q_{\mathrm{v}}$ versus $\Delta H=q_{\mathrm{P}}$



Endothermic reaction that has work done on it will get colder at constant volume.

## $\Delta U=q_{\mathrm{v}}$ versus $\Delta H=q_{\mathrm{P}}$



Endothermic reaction that does work on surroundings will get less cold at constant volume.

## $\Delta U=q_{\mathrm{V}}$ versus $\Delta H=q_{\mathrm{P}}$

In a sealed, rigid container ...
constant $V \rightarrow$ no work possible
$\rightarrow \Delta T$ is a measure of $\Delta U=q_{v}$
In an open container ...
constant $P \rightarrow$ work possible
$\rightarrow \Delta T$ is a measure of $\Delta H=q_{P}$

| Open container | Gas moles | $\left\|\Delta T_{\text {close }}\right\|>\left\|\Delta T_{\text {open }}\right\| ?$ |
| :---: | :---: | :---: |
| Exothermic | Formed | Greater (hotter) |
| Exothermic | Consumed | Smaller (less hot) |
| Endothermic | Formed | Smaller (less cold) |
| Endothermic | Consumed | Greater (colder) |

Relationship between internal energy change, $\Delta U$ (black path), and enthalpy change, $\Delta H$ (red path), according to
(1) whether products have more (upper figures) or less (lower figures) internal energy than reactants, and
(2) whether work (cyan path) is done on the system (left figures) or on the surroundings (right figures).

When no work is done at constant $P$, then $\Delta U$ and $\Delta H$ have the same value.



