1. In one hour, a substance decay by 20% and so \((1/2)n = 0.80\). The number of half-lives that have elapsed is...

 \[\begin{align*}
 A & \quad n = - \frac{\log(0.80)}{\log(2)} = \log(8)/\log(2) \\
 B & \quad n = - \frac{\log(0.80)}{\log(2)} = (\log(8)-1)/\log(2) \\
 C & \quad n = - \frac{\log(0.80)}{\log(2)} = (-\log(8)+1)/\log(2) \\
 D & \quad \text{None of the above}
 \end{align*} \]

2. In one hour, a substance decay by 20%. This means...

 \[\begin{align*}
 A & \quad (1/2)n = 20. \\
 B & \quad (1/2)n = 0.20 \\
 C & \quad (1/2)n = 80. \\
 D & \quad (1/2)n = 0.80
 \end{align*} \]

3. In one hour, a substance decays by 20% and so \((1/2)n = 0.80\). We can solve for \(n\) using

 \[\begin{align*}
 A & \quad n = 0.80/\log(1/2) = -0.80/\log(2) \\
 B & \quad n = 0.80/\log(2) \\
 C & \quad n = - \log(0.80)/\log(2) \\
 D & \quad n = \log(0.80)/\log(2) = \log(0.80/2)
 \end{align*} \]

4. In one hour, a substance decay by 20% and so \((1/2)n = 0.80\). The number of half-lives that have elapsed is...

 \[\begin{align*}
 A & \quad 0.20 \\
 B & \quad 0.25 \\
 C & \quad 0.50 \\
 D & \quad 0.80 \\
 E & \quad \text{None of these}
 \end{align*} \]

5. A substance decays with half-life 6.0 min. The fraction of the substance present after 20 minutes is \(x\). Which expression is correct?

 \[\begin{align*}
 A & \quad x = 20./6.0 \\
 B & \quad x = 1/6.0 \\
 C & \quad (1/2)^{10/3} = x \\
 D & \quad (1/2)^{-10/3} = x
 \end{align*} \]

6. A substance decays with half-life 6.0 min. The fraction of the substance present after 20 minutes, \(x = (1/2)^{-10/3}\), is

 \[\begin{align*}
 A & \quad 0.20 \\
 B & \quad 0.25 \\
 C & \quad 0.80 \\
 D & \quad \text{None of these}
 \end{align*} \]
At a particular moment of time, a sample of a radioactive element contains 1,000,000 atoms. After 10 hours, 125,000 atoms of the element remain. What is the half-life of the radioactive decay?

A 10 hours
B 5 hours
C 2.5 hours
D None of the above.