1. Consider 3 fewer waters on both sides. \(W_{sys} \) is then ...

\[
A \quad 84 \times \left(\frac{2}{3}\right) = 56
\]
\[
B \quad 20
\]
\[
C \quad 15
\]

2. Consider 3 fewer waters on both sides. \(W_{sys} \) is then 20. If 3 water molecules moved to the right, \(W_{sys} \) would be ...

\[
A \quad 84 \times \left(\frac{2}{3}\right) = 56
\]
\[
B \quad 84
\]
\[
C \quad 20 \times \frac{3}{2} = 45
\]

3. Consider 3 fewer waters on both sides. \(W_{sys} \) is then 20. If 3 water molecules moved to the left, \(W_{sys} \) would be ...

\[
A \quad 84
\]
\[
B \quad 20
\]
\[
C \quad 1
\]
Consider 3 fewer waters on both sides. If 3 water molecules move left W_{sys} is 1, and if they move right W_{sys} is 1. Which happens?

A Movement to left
B Movement to right
C More information needed.