We have derived that \(dG = dG_0 + RT \ln(Q) \). What is the value of \(Q \) when everything is in standard states?

A. \(Q = \infty \)
B. \(Q = 1 \)
C. \(Q = 0 \)
D. More information needed

We have derived that \(dG = dG_0 + RT \ln(Q) \). What is the value of \(dG \) when everything is in standard states?

A. \(dG = 0 \)
B. \(dG = 1 \)
C. \(dG = dG_0 \)
D. More information needed

We have derived that \(dG = dG_0 + RT \ln(Q) \). What is the value of \(dG \) when \(Q = K \)?

A. \(dG = 0 \)
B. \(dG = 1 \)
C. \(dG = dG_0 \)
D. More information needed

We have derived that \(dG = dG_0 + RT \ln(Q) \). What is the value of \(dG_0 \) when \(Q = K \)?

A. \(dG_0 = 0 \)
B. \(dG_0 = 1 \)
C. \(dG_0 = -RT \ln(K) \)
D. More information is needed

We have derived that \(dG = dG_0 + RT \ln(Q) \). What is the value of \(dG_0 \) when \(Q \) does not equal \(K \)?

A. \(dG_0 = 0 \)
B. \(dG_0 = 1 \)
C. \(dG_0 = -RT \ln(K) \)
D. More information is needed

We have derived that \(dG_0 = dH_0 - TdS_0 = -RT \ln(K) \). How does \(\ln(K) \) depend on \(T \)?

A. \(\ln(K) \) is proportional to \(T \)
B. \(\ln(K) \) is independent of \(T \)
C. \(\ln(K) \) is proportional to \(1/T \)
D. None of the above
7. We have derived that \(dG_0 = dH_0 - TdS_0 = -RT \ln(K)\). What best describes the graph of \(\ln(K)\) versus \(1/T\)?

A. An hyperbola
B. A parabola
C. A straight line
D. None of the above

8. We have derived that \(dG_0 = dH_0 - TdS_0 = -RT \ln(K)\). What is the slope of the graph of \(\ln(K)\) versus \(1/T\)?

A. 1
B. \(\frac{dH_0}{R}\)
C. \(-\frac{dH_0}{R}\)
D. 0 (horizontal line)

9. We have derived that \(dG_0 = dH_0 - TdS_0 = -RT \ln(K)\). What is the value of \(\ln(K)\) at infinite temperature.

A. 0
B. \(\frac{dS_0}{R}\)
C. infinite
D. None of the above

10. Why does \(\ln(K)\) at infinite temperature *not* depend on \(dH_0\)?

A. Reactions result in zero entropy in the surroundings when \(T = \infty\).
B. Reactions result in zero entropy change in the surroundings when \(T = \infty\).
C. Reactions result in zero entropy in the system when \(T = \infty\).
D. Reactions result in zero entropy change in the system when \(T = \infty\).