Half-life example calculations

CH101 Fall 2009 Boston University

Half-life calculations

Fundamental relation

$$(1/2)^n N_0 = N$$

- 1. Half life is n for $N/N_0 = 1/2$; independent of N_0 .
- 2. Given N/N $_0$ after time t, calculate n, and then $t_{half} = t/n$
- 3. Given n, calculate N/N_0 , the fraction remaining after t = n t_{half}

Half-life calculations

 $(1/2)^n N_0 = N$

Half-life is 33 minutes. What fraction remains after 75 minutes?

Strategy: Use n = 75/33 and then fraction remaining = $N/N_0 = (1/2)^n$

Answer: n = 75/33 = 2.3, $(1/2)^n = 0.21$ (21%)

Half-life calculations

 $(1/2)^n N_0 = N$

Half-life is 11 days. How long to decay by 10%?

Strategy: Use N/N₀ = 0.90, solve N/N₀ = $(1/2)^n$ for n = time/t_{half}, and so time = n x t_{half}

Answer: $log[(1/2)^n] = -n log(2) = log(N/N_0)$ so $n = -log(N/N_0)/log(2)$ = -log(0.90)/log(2) = 0.152, hence, time = 0.152 x 11 days = **1.7 days**

Half-life calculations

 $(1/2)^n N_0 = N$

A sample decays by 25% in 15 minutes. What Is its half-life?

Strategy: Use N/N $_0$ = 0.75 and n = 15 min/t $_{half}$, solve N/N $_0$ = (1/2) n for n = time/t $_{half}$, and so t $_{half}$ = time/n

Answer: n = $-\log(N/N_0)/\log(2)$ = $-\log(0.75)/\log(2) = 0.415$, hence t_{half} = 15/0.415 minutes = **36 minutes** CPS lesson: Half-life examples

Half-life calculations

Fundamental relation

 $(1/2)^n N_0 = N$