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The best way to understand the curvature form of the Schrödinger equation,

curvature of y at x ∂ - kinetic energy at x μ y at x,

is to see how it works for an example. To keep things simple, we will do this for now omitting units, 
since we are interested in the qualitative details. To begin we need to specify the kinetic energy 
variation, and then to choose starting values for the function y.

Note that there are two aspects to what follows. First are the details of using the Schrödinger 
equation to determine successive values of the wavefunction once two initial values are chosen. 
Second is the implementation of these details. Here the implementation is done in Mathematica, 
since this allows us to express things in a way that follows closely the equations. If you do not yet 
know Mathematica, following along may help you see by example how Mathematica can be used. 
However, you do not need to understand the Mathematica details to understand the ideas developed 
here.

à Choose the kinetic energy variation

The starting point in working with the Schrödinger equation is always the same, namely to specify 
how the kinetic energy changes with position. This is usually done indirectly by specifying how the 
potential energy changes with position. Let's choose a ramp potential, that increases at a constant 
rate, say

V HxL = x.

In general, the absolute value of the potential energy and the location of the zero value of position are 
arbitrary. What is important is the potential energy relative to the total energy, for this determines the 
kinetic energy, as

THxL = E - V HxL.

As example, let's set the total energy at E = 3 units and then graph the potential energy (red line) and 
total energy (blue line).
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Variation of kinetic energy with position for an upward sloping ramp potential energy, VHxL. The horzontal line is the total energy, E. 
The vertical lines are the kinetic energy, E - VHxL. The classical turning point is at x = 3 (thin vertical line). To the right of the 
classical turning point the kinetic energy is negative (thick vertical line) and so not realizable classically.

The kinetic energy at each point is the difference of the values of the blue line and red line at that 
point. For example, the vertcial line at x = 1 represents the kinetic energy of two units at that point. 
The kinetic energy decreases as position moves to more positive values of x, since the potential 
increases in this direction.

The thin vertical line is the position at which the total energy is entirely potential energy. This is the 
rightmost position a classical particle with total energy E can have. To the right of this line the 
kinetic energy is negative! For example, the vertical line at x = 4 represents the kinetic energy of 
negative one unit.

Regions of negative kinetic energy are not possible in ordinary, everyday experience, but they turn 
out to be very important in the quantum world. Such regions are called forbidden regions. Regions of 
positive kinetic energy are called allowed regions.

à Use the Schrödinger equation to determine the wavefunction

Once we have specified the kinetic energy, we next need to choose starting values for the 
wavefunction y at two adjacent positions. Let's do this for x = 0 and x = 0.4,

x1 = 0, yHx1L = 0,

x2 = 0.4, yHx2L = 0.4,

Show that these values mean we are assigning an initial slope of 1 to the wavefunction.

With these starting values of yHxL, together with the kinetic energy function THxL, we have everything 
we need to use the Schrödinger equation to determine yHxL for all other values of x. Here is the recipe.

From two adjacent values of y, we can determine its slope. The slope corresponding to the first two 
points we have chosen is

slopeHx1L =
yHx2L - yHx1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x1
=

0.4 - 0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
0.4 - 0

= 1

From the Schrödinger equation and the kinetic energy we can determine the rate at which the slope 
changes (the slope of the slope),

curvature of y at x2 =
slopeHx2L - slopeHx1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x1
= -THx2L yHx2L
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Here, for simplicity, we have omitted from Schrödinger equation the constant factor 2 m êÑ2. This 
"curvature" tells us how the slope changes moving from x1 to x2. We can use change in slope to get 
the value of the function y at a nearby new point 0.4 units away,

x3 = x2 + 0.4.

To do this, first we use the Schrödinger equation to evaluate that the initial slope is changing at the 
rate

-THx2L yHx2L = -HE - V HxL yHx2L = -H3 - 0.4L μ 0.4 = -1.04

That is, for each unit change of x the slope increases by -1.04. The negative sign means that over a 
distance 0.4 the slope decreases by

slopeHx2L - slopeHx1L = -THx2L yHx2L Hx2 - x1L = -1.04 μ H0.8 - 0.4L = -0.416.

and so at position x3 the slope has changed to

slopeHx3L = slopeHx2L - THx2L yHx2L Hx2 - x1L = 1 - 0.416 = 0.584

Finally, since this new slope is given by Hy3 - y2L ê Hx3 - x2L, we can use it to determine the value of 
the y at x3 to be 

yHx3L = yHx2L + slopeHx2L Hx3 - x2L = 0.4 + 0.584 μ H0.8 - 0.4L = 0.634.

Show that the wavefunction changes to yHx4L = 0.644 at x4 = x3 + 0.4.

Here is an illustration showing the successive function values.
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The rightmost value of the wavefunction is computed from the change in slope connecting the first two points. According to the 
Schrödinger equation, this change in slope is given by the negative of the product of the kinetic energy and the value of the 
wavefunction at the second point.

The successive values of the function y are indicated by the grey circles. The line connecting the first 
and second values of the function has the initial slope 1. The line connecting the second and third 
values of the function has the new, lower slope. The difference in these two slopes reflects the 
curvature of the function, determined by the Schrödinger equation.

We have seen how to use the Schrödinger equation to find a next value of the function y from two 
adjacent, preceding values. Once we have the new value of y we can use it, and the immediately 
preceding value, to get a next new value of y. We can continue in this way to determine the how the 
function y changes along a set of successive positions.
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To implement the process we need to collect together the steps we have taken above to determine y3,

y3

= newSlope μ Hx3 - x2L + y2

= HinitialSlope + changeInSlopeL * Hx3 - x2L + y2

=
loom
n
ooo

 y2 - y1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x1
+ slopeOfSlope@x2D μ Hx3 - x2L

|oo}
~
ooo μ Hx3 - x2L + y2

=
loom
n
ooo

 y2 - y1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x1
- THx2L μ y2 μ Hx3 - x2L

|oo}
~
ooo μ Hx3 - x2L + y2

=
loom
n
ooo

 y2 - y1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x1
- @E - V Hx2LD μ y2 μ Hx3 - x2L

|oo}
~
ooo μ Hx3 - x2L + y2.

This last expression shows that each new value, y3, depends on: the previous two values, y1and y2; 
the previous two positions, x1and x2; the new position, x3; the potential energy at the immediately 
preceding position, V Hx2L; and the total energy, E.
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