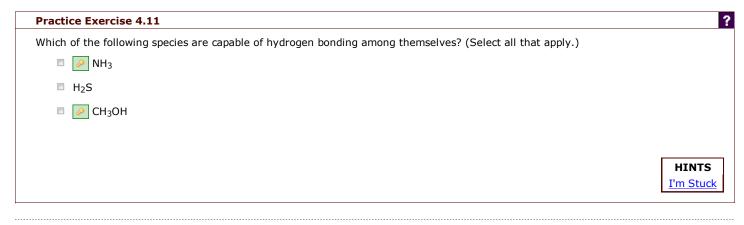

Assignment 6 (1530964)

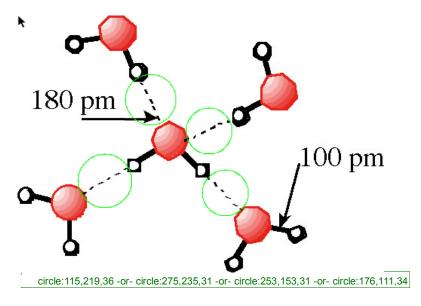
Question 1234567891011121314


Description Number of submissions has been reduced to 3 unless otherwise noted!!!

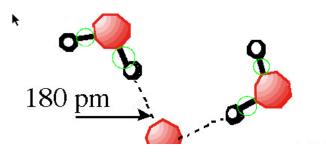
1. Question DetailsLairdUChem1 4.EOCP.051. [1003667]

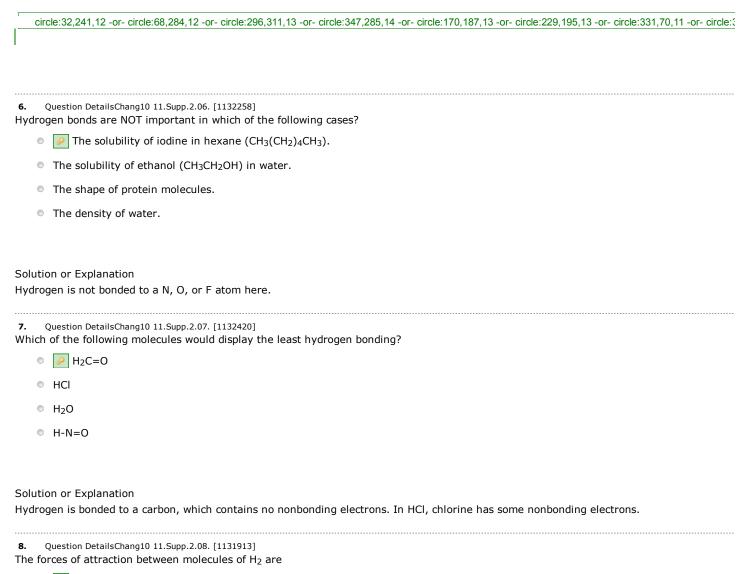
Which member of the following pairs would you expect to have the highest boiling point?

Question Detail Practice Exer	sLairdUChem1 4.PracticeEx.10. [1063663] cise 4.10
	(s) of intermolecular forces that exists between molecules (or basic units) in each of the following species. (Select all the
apply.)	
(a) <mark>CC</mark>	
	dipole-dipole
	dispersion
	ion-dipole
	ion-ion
(b) <mark>Se(</mark>	D ₂
	🤌 dipole-dipole
	Ø dispersion
	ion-dipole
	ion-ion
(c) <mark>PCI</mark>	3
	🤌 dipole-dipole
	🤌 dispersion
	ion-dipole
	ion-ion
	HINTS
	<u>I'm Stuck</u>


4. Question Details11 extra 55 [652416]

Indicate which molecule (a or b) in each pair has the **higher boiling point.** Also indicate which force, **h**ydrogen bonding (H), dipolar (P), or dispersion (D) is responsible for the difference.


	а	b	Molecule (a or b)	Force (H,P, or D)
1.	NH ₃	PH ₃	a	H
2.	C ₂ H ₅ OH	CH ₃ OCH ₃	a	H
3.	C ₄ H ₈	C ₁₀ H ₂₀	b	D
4.	HCI	F ₂	a	P


5. Question Details040615f [355946]

Consider this representation of covalent bonds and hydrogen bonds in water: (a) Click on any of the hydrogen bonds

(b) Click on one of the covalent bonds

- London forces (dispersion forces)
- covalent bonds
- dipole-induced dipole interactions
- dipole-dipole interactions

Solution or Explanation

Only London forces are present since H_2 is non-polar molecule.

^{9.} Question DetailsChang10 11.Supp.2.09. [1132017] Which noble gas has the highest boiling point?

- ◎ 🤌 Xe
- Ar
- Kr
- Ne

Solution or Explanation

Use molar mass as a criteria; highest MW strongest intermolecular force.

10. Question DetailsChang10 11.Supp.2.10. [1133622]

Helium atoms do NOT combine to form He2 molecules, yet He atoms do attract one another weakly through:

- ion-dipole interactions
- o dipole-dipole interactions
- hydrogen bonding
- o / dispersion forces

Solution or Explanation All atoms can exhibit dispersions between themselves.

11. Question DetailsChang10 11.Supp.2.17. [1133809] The ability of neon gas to condense would be due to

- dipole-dipole-dipole forces
- London dispersion forces
- covalent bonding
- ionic bonding

Solution or Explanation To condense the particles must get very close together and this would involve London forces.

12. Question DetailsChang10 11.Supp.2.24. [1133263]

In C_6H_5Cl (chlorobenzene), which of the intermolecular forces present in the liquid phase? (1) ion-ion (2) ion-dipole (3) dipole-dipole (4) London dispersion

- (1) and (3)
- (3) and (4)
- (1) and (2)
- (2) and (4)

Solution or Explanation

Dipole-dipole due to C-Cl and all compounds have London forces.

13. Question DetailsChang10 11.Supp.2.26. [1133802]

Which of the following represents the correct order of increasing boiling points for CCl₄, Cl₂, ClNO, N_2 ?

- $P_2 < Cl_2 < CINO < CCl_4$
- $Cl_2 < N_2 < CCl_4 < CINO$
- $CCl_4 < N_2 < Cl_2 < CINO$
- $CCI_4 < CINO < CI_2 < N_2$

Solution or Explanation

Use molecular weight and polarity as criteria.

14. Question DetailsChang10 11.Supp.2.27. [1132843]

What intermolecular force is most important between CH₃Cl molecules in a pure sample of the compound?

- ion-dipole interaction
- ion-ion
- o dipole-induced dipole interaction
- o pole-dipole interaction

Solution or Explanation

C-Cl indicate dipole-dipole interactions due to the polarity of the molecule.

Assignment Details

Name (AID): Assignment 6 (1530964)	Feedback Settings		
Submissions Allowed: 3	Before due date	After due date	
Category: Homework	Question Score	Question Score	
Code:	Assignment Score	Assignment Score	
Locked: Yes	Publish Essay Scores	Publish Essay Scores	
Author: Hammond, Nicholas (<u>hmnd@bu.edu</u>)	Question Part Score	Кеу	
Last Saved: Nov 29, 2010 01:25 PM EST	Mark	Question Part Score	
Permission: Protected	Add Practice Button	Solution	
Randomization: Person	Help/Hints	Mark	
Which graded: Last	Response	Add Practice Button	
	Save Work	Help/Hints	
		Response	